Chapter 21: Advanced Theories of Covalent Bonding

Organic and Biochemistry Supplement to Enhanced Introductory College Chemistry

by Gregory Anderson; Jen Booth; Caryn Fahey; Adrienne Richards; Samantha Sullivan Sauer; and David Wegman

Chapter 21 Contents

In this chapter, you will learn about:

  • Valence Bond Theory
  • Hybrid Atomic Orbitals
  • Multiple Bonds
  • Molecular Orbital Theory

Except where otherwise noted, this OER is licensed under CC BY-NC-SA 4.0

Please visit the web version of Organic and Biochemistry Supplement to Enhanced Introductory College Chemistry to access the complete book, interactive activities and ancillary resources.

To better support your learning, you should be familiar with the following concepts before starting this chapter:

A pitcher is shown pouring liquid oxygen through the gap between two magnets, where it has formed a solid disk. A call out box near the stream of liquid oxygen shows an image of six pairs of spheres, spread apart from one another. Another call out box near the solid disk shows ten pairs of spheres much closer together.
Figure 21.0a. Oxygen molecules orient randomly most of the time, as shown in the top magnified view. However, when we pour liquid oxygen through a magnet, the molecules line up with the magnetic field, and the attraction allows them to stay suspended between the poles of the magnet where the magnetic field is strongest. Other diatomic molecules (like N2) flow past the magnet. The detailed explanation of bonding described in this chapter allows us to understand this phenomenon. (credit: modification of work by Jefferson Lab)
Two Lewis diagrams are shown. The diagram on the left shows two nitrogen atoms, represented by the letter N connected by three lines and with a lone pair of electrons on each end of the structure. The diagram on the right shows two oxygen atoms, depicted by the letter O, connected by two lines. Two pairs of electrons surround each oxygen to the top and ends of the structure.
Figure 21.0b. Lewis structure of nitrogen molecule and oxygen molecule showing multiple bonds and lone pairs of electrons (credit: Chemistry (Open Stax), CC BY 4.0).

We have examined the basic ideas of bonding, showing that atoms share electrons to form molecules with stable Lewis structures and that we can predict the shapes of those molecules by valence shell electron pair repulsion (VSEPR) theory. These ideas provide an important starting point for understanding chemical bonding. But these models sometimes fall short in their abilities to predict the behaviour of real substances. How can we reconcile the geometries of s, p, and d atomic orbitals with molecular shapes that show angles like 120° and 109.5°? Furthermore, we know that electrons and magnetic behaviour are related through electromagnetic fields. Both N2 and O2 have fairly similar Lewis structures that contain lone pairs of electrons.

Yet oxygen demonstrates very different magnetic behaviour than nitrogen. We can pour liquid nitrogen through a magnetic field with no visible interactions, while liquid oxygen is attracted to the magnet and floats in the magnetic field. We need to understand the additional concepts of valence bond theory, orbital hybridization, and molecular orbital theory to understand these observations.

Attribution & References

Except where otherwise noted, this page is adapted by Samantha Sullivan Sauer from “Chapter 5 Introduction” In General Chemistry 1 & 2 by Rice University, a derivative of Chemistry (Open Stax) by Paul Flowers, Klaus Theopold, Richard Langley & William R. Robinson and is licensed under CC BY 4.0. ​Access for free at Chemistry (OpenStax)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Organic and Biochemistry Supplement to Enhanced Introductory College Chemistry Copyright © 2024 by Gregory Anderson; Caryn Fahey; Adrienne Richards; Samantha Sullivan Sauer; David Wegman; and Jen Booth is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book