Chapter 3.4: Unit Circle
Learning Objectives
In this section you will:
- Find function values for the sine and cosine of and
- Identify the domain and range of sine and cosine functions.
- Find reference angles.
- Use reference angles to evaluate trigonometric functions.
Looking for a thrill? Then consider a ride on the Singapore Flyer, the world’s tallest Ferris wheel. Located in Singapore, the Ferris wheel soars to a height of 541 feet—a little more than a tenth of a mile! Described as an observation wheel, riders enjoy spectacular views as they travel from the ground to the peak and down again in a repeating pattern. In this section, we will examine this type of revolving motion around a circle. To do so, we need to define the type of circle first, and then place that circle on a coordinate system. Then we can discuss circular motion in terms of the coordinate pairs.
Finding Trigonometric Functions Using the Unit Circle
We have already defined the trigonometric functions in terms of right triangles. In this section, we will redefine them in terms of the unit circle. Recall that a unit circle is a circle centered at the origin with radius 1, as shown in (Figure). The angle (in radians) that intercepts forms an arc of length Using the formula and knowing that we see that for a unit circle,
The x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these quadrants to mimic the direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.
For any angle we can label the intersection of the terminal side and the unit circle as by its coordinates, The coordinates and will be the outputs of the trigonometric functions and respectively. This means and
Unit Circle
A unit circle has a center at and radius In a unit circle, the length of the intercepted arc is equal to the radian measure of the central angle
Let be the endpoint on the unit circle of an arc of arc length The coordinates of this point can be described as functions of the angle.
Defining Sine and Cosine Functions from the Unit Circle
The sine function relates a real number to the y-coordinate of the point where the corresponding angle intercepts the unit circle. More precisely, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length In (Figure), the sine is equal to Like all functions, the sine function has an input and an output. Its input is the measure of the angle; its output is the y-coordinate of the corresponding point on the unit circle.
The cosine function of an angle equals the x-value of the endpoint on the unit circle of an arc of length In (Figure), the cosine is equal to
Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses: is the same as and is the same as Likewise, is a commonly used shorthand notation for Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use the extra parentheses when entering calculations into a calculator or computer.
Sine and Cosine Functions
If is a real number and a point on the unit circle corresponds to a central angle then
How To
Given a point P on the unit circle corresponding to an angle of find the sine and cosine.
- The sine of is equal to the y-coordinate of point
- The cosine of is equal to the x-coordinate of point
Finding Function Values for Sine and Cosine
Point is a point on the unit circle corresponding to an angle of as shown in (Figure). Find and
Show Solution
We know that is the x-coordinate of the corresponding point on the unit circle and is the y-coordinate of the corresponding point on the unit circle. So:
Try It
A certain angle corresponds to a point on the unit circle at as shown in (Figure). Find and
Show Solution
Finding Sines and Cosines of Angles on an Axis
For quadrantal angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we can easily calculate cosine and sine from the values of and
Calculating Sines and Cosines along an Axis
Find and
Show Solution
Moving counterclockwise around the unit circle from the positive x-axis brings us to the top of the circle, where the coordinates are as shown in (Figure).
We can then use our definitions of cosine and sine.
The cosine of is 0; the sine of is 1.
Try It
Find cosine and sine of the angle
Show Solution
The Pythagorean Identity
Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle. Recall that the equation for the unit circle is Because and we can substitute for and to get This equation, is known as the Pythagorean Identity. See (Figure).
We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa. However, because the equation yields two solutions, we need additional knowledge of the angle to choose the solution with the correct sign. If we know the quadrant where the angle is, we can easily choose the correct solution.
Pythagorean Identity
The Pythagorean Identity states that, for any real number
How To
Given the sine of some angle and its quadrant location, find the cosine of
- Substitute the known value of into the Pythagorean Identity.
- Solve for
- Choose the solution with the appropriate sign for the x-values in the quadrant where is located.
Finding a Cosine from a Sine or a Sine from a Cosine
If and is in the second quadrant, find
Show Solution
If we drop a vertical line from the point on the unit circle corresponding to we create a right triangle, from which we can see that the Pythagorean Identity is simply one case of the Pythagorean Theorem. See (Figure).
Substituting the known value for sine into the Pythagorean Identity,
Because the angle is in the second quadrant, we know the x-value is a negative real number, so the cosine is also negative.
Try It
If and is in the fourth quadrant, find
Show Solution
Finding Sines and Cosines of Special Angles
We have already learned some properties of the special angles, such as the conversion from radians to degrees, and we found their sines and cosines using right triangles. We can also calculate sines and cosines of the special angles using the Pythagorean Identity.
Finding Sines and Cosines of Angles
First, we will look at angles of or as shown in (Figure). A triangle is an isosceles triangle, so the x- and y-coordinates of the corresponding point on the circle are the same. Because the x- and y-values are the same, the sine and cosine values will also be equal.
At which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means the radius lies along the line A unit circle has a radius equal to 1 so the right triangle formed below the line has sides and and radius = 1. See (Figure).
From the Pythagorean Theorem we get
We can then substitute
Next we combine like terms.
And solving for we get
In quadrant I,
At or 45 degrees,
If we then rationalize the denominators, we get
Therefore, the coordinates of a point on a circle of radius at an angle of are
Finding Sines and Cosines of and Angles
Next, we will find the cosine and sine at an angle of or First, we will draw a triangle inside a circle with one side at an angle of and another at an angle of as shown in (Figure). If the resulting two right triangles are combined into one large triangle, notice that all three angles of this larger triangle will be as shown in (Figure).
Because all the angles are equal, the sides are also equal. The vertical line has length and since the sides are all equal, we can also conclude that or Since
And since in our unit circle,
Using the Pythagorean Identity, we can find the cosine value.
The coordinates for the point on a circle of radius at an angle of are At the radius of the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle, as shown in (Figure). Angle has measure At point we draw an angle with measure of We know the angles in a triangle sum to so the measure of angle is also Now we have an equilateral triangle. Because each side of the equilateral triangle is the same length, and we know one side is the radius of the unit circle, all sides must be of length 1.
The measure of angle is Angle is double angle so its measure is is the perpendicular bisector of so it cuts in half. This means that is the radius, or Notice that is the x-coordinate of point which is at the intersection of the 60° angle and the unit circle. This gives us a triangle with hypotenuse of 1 and side of length
From the Pythagorean Theorem, we get
Substituting we get
Solving for we get
Since has the terminal side in quadrant I where the y-coordinate is positive, we choose the positive value.
At (60°), the coordinates for the point on a circle of radius at an angle of are so we can find the sine and cosine.
We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of the unit circle. (Figure) summarizes these values.
Angle | or | or | or | or | |
Cosine | 1 | 0 | |||
Sine | 0 | 1 |
(Figure) shows the common angles in the first quadrant of the unit circle.
Using a Calculator to Find Sine and Cosine
To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware: Most calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we evaluate on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the cosine of 30 radians if the calculator is in radian mode.
How To
Given an angle in radians, use a graphing calculator to find the cosine.
- If the calculator has degree mode and radian mode, set it to radian mode.
- Press the COS key.
- Enter the radian value of the angle and press the close-parentheses key “)”.
- Press ENTER.
Using a Graphing Calculator to Find Sine and Cosine
Evaluate using a graphing calculator or computer.
Show Solution
Enter the following keystrokes:
Analysis
We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For calculators or software that use only radian mode, we can find the sign of for example, by including the conversion factor to radians as part of the input:
Try It
Evaluate
Show Solution
approximately 0.866025403
Identifying the Domain and Range of Sine and Cosine Functions
Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the functions? Because angles smaller than and angles larger than can still be graphed on the unit circle and have real values of there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. The input to the sine and cosine functions is the rotation from the positive x-axis, and that may be any real number.
What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? We can see the answers by examining the unit circle, as shown in (Figure). The bounds of the x-coordinate are The bounds of the y-coordinate are also Therefore, the range of both the sine and cosine functions is
Finding Reference Angles
We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. Because the sine value is the y-coordinate on the unit circle, the other angle with the same sine will share the same y-value, but have the opposite x-value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.
Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle with the same cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value will be the opposite of the original angle’s sine value.
As shown in (Figure), angle has the same sine value as angle the cosine values are opposites. Angle has the same cosine value as angle the sine values are opposites.
Recall that an angle’s reference angle is the acute angle, formed by the terminal side of the angle and the horizontal axis. A reference angle is always an angle between and or and radians. As we can see from (Figure), for any angle in quadrants II, III, or IV, there is a reference angle in quadrant I.
How To
Given an angle between and find its reference angle.
- An angle in the first quadrant is its own reference angle.
- For an angle in the second or third quadrant, the reference angle is or
- For an angle in the fourth quadrant, the reference angle is or
- If an angle is less than or greater than add or subtract as many times as needed to find an equivalent angle between and
Finding a Reference Angle
Find the reference angle of as shown in (Figure).
Show Solution
Because is in the third quadrant, the reference angle is
Try It
Find the reference angle of
Show Solution
Using Reference Angles
Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose a rider snaps a photograph while stopped twenty feet above ground level. The rider then rotates three-quarters of the way around the circle. What is the rider’s new elevation? To answer questions such as this one, we need to evaluate the sine or cosine functions at angles that are greater than 90 degrees or at a negative angle. Reference angles make it possible to evaluate trigonometric functions for angles outside the first quadrant. They can also be used to find coordinates for those angles. We will use the reference angle of the angle of rotation combined with the quadrant in which the terminal side of the angle lies.
Using Reference Angles to Evaluate Trigonometric Functions
We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference angle. The absolute values of the cosine and sine of an angle are the same as those of the reference angle. The sign depends on the quadrant of the original angle. The cosine will be positive or negative depending on the sign of the x-values in that quadrant. The sine will be positive or negative depending on the sign of the y-values in that quadrant.
Using Reference Angles to Find Cosine and Sine
Angles have cosines and sines with the same absolute value as their reference angles. The sign (positive or negative) can be determined from the quadrant of the angle.
How To
Given an angle in standard position, find the reference angle, and the cosine and sine of the original angle.
- Measure the angle between the terminal side of the given angle and the horizontal axis. That is the reference angle.
- Determine the values of the cosine and sine of the reference angle.
- Give the cosine the same sign as the x-values in the quadrant of the original angle.
- Give the sine the same sign as the y-values in the quadrant of the original angle.
Using Reference Angles to Find Sine and Cosine
- Using a reference angle, find the exact value of and
- Using the reference angle, find and
Show Solution
- is located in the second quadrant. The angle it makes with the x-axis is so the reference angle is
This tells us that has the same sine and cosine values as except for the sign.
Since is in the second quadrant, the x-coordinate of the point on the circle is negative, so the cosine value is negative. The y-coordinate is positive, so the sine value is positive.
- is in the third quadrant. Its reference angle is The cosine and sine of are both In the third quadrant, both and are negative, so:
Try It
- Use the reference angle of to find and
- Use the reference angle of to find and
Show Solution
Using Reference Angles to Find Coordinates
Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we can use symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on the unit circle. They are shown in (Figure). Take time to learn the coordinates of all of the major angles in the first quadrant.
Key Equations
Cosine | |
Sine | |
Pythagorean Identity |
Key Concepts
- Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin and has a radius of 1 unit.
- Using the unit circle, the sine of an angle equals the y-value of the endpoint on the unit circle of an arc of length whereas the cosine of an angle equals the x-value of the endpoint. See (Figure).
- The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an axis. See (Figure).
- When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity is also useful for determining the sines and cosines of special angles. See (Figure).
- Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering information is known. See (Figure).
- The domain of the sine and cosine functions is all real numbers.
- The range of both the sine and cosine functions is
- The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
- The signs of the sine and cosine are determined from the x– and y-values in the quadrant of the original angle.
- An angle’s reference angle is the size angle, formed by the terminal side of the angle and the horizontal axis. See (Figure).
- Reference angles can be used to find the sine and cosine of the original angle. See (Figure).
- Reference angles can also be used to find the coordinates of a point on a circle. See (Figure).
Section Exercises
Verbal
1. Describe the unit circle.
Show Solution
The unit circle is a circle of radius 1 centered at the origin.
2. What do the x- and y-coordinates of the points on the unit circle represent?
3. Discuss the difference between a coterminal angle and a reference angle.
Show Solution
Coterminal angles are angles that share the same terminal side. A reference angle is the size of the smallest acute angle, formed by the terminal side of the angle and the horizontal axis.
4. Explain how the cosine of an angle in the second quadrant differs from the cosine of its reference angle in the unit circle.
5. Explain how the sine of an angle in the second quadrant differs from the sine of its reference angle in the unit circle.
Show Solution
The sine values are equal.
Algebraic
For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the terminal point determined by lies.
6. and
7. and
Show Solution
I
8. and
9. and
Show Solution
IV
For the following exercises, find the exact value of each trigonometric function.
10.
11.
Show Solution
12.
13.
Show Solution
14.
15.
Show Solution
16.
17.
Show Solution
0
18.
19.
Show Solution
-1
20.
21.
Show Solution
22.
Numeric
For the following exercises, state the reference angle for the given angle.
23.
Show Solution
24.
25.
Show Solution
26.
27.
Show Solution
28.
29.
Show Solution
30.
31.
Show Solution
32.
33.
Show Solution
For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of each angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.
40.
41.
Show Solution
Quadrant IV,
42.
43.
Show Solution
Quadrant II,
44.
45.
Show Solution
Quadrant II,
46.
47.
Show Solution
Quadrant II,
48.
49.
Show Solution
Quadrant III,
50.
51.
Show Solution
Quadrant II,
52.
53.
Show Solution
Quadrant II,
54.
55.
Show Solution
Quadrant IV,
For the following exercises, find the requested value.
56. If and is in the fourth quadrant, find
57. If and is in the first quadrant, find
Show Solution
58. If and is in the second quadrant, find
59. If and is in the third quadrant, find
Show Solution
60. Find the coordinates of the point on a circle with radius 15 corresponding to an angle of
61. Find the coordinates of the point on a circle with radius 20 corresponding to an angle of
Show Solution
62. Find the coordinates of the point on a circle with radius 8 corresponding to an angle of
63. Find the coordinates of the point on a circle with radius 16 corresponding to an angle of
Show Solution
64. State the domain of the sine and cosine functions.
65. State the range of the sine and cosine functions.
Show Solution
Graphical
For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of
66.
67.
Show Solution
68.
69.
Show Solution
70.
71.
Show Solution
72.
73.
Show Solution
74.
75.
Show Solution
76.
77.
Show Solution
78.
79.
Show Solution
80.
81.
Show Solution
82.
83.
Show Solution
84.
85.
Show Solution
Technology
For the following exercises, use a graphing calculator to evaluate.
86.
87.
Show Solution
−0.1736
88.
89.
Show Solution
0.9511
90.
91.
Show Solution
−0.7071
92.
93.
Show Solution
−0.1392
94.
95.
Show Solution
−0.7660
Extensions
For the following exercises, evaluate.
96.
97.
Show Solution
98.
99.
Show Solution
100.
101.
Show Solution
102.
103.
Show Solution
104.
105.
Show Solution
0
Real-World Applications
For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around. The child enters at the point that is, on the due north position. Assume the carousel revolves counter clockwise.
106. What are the coordinates of the child after 45 seconds?
107. What are the coordinates of the child after 90 seconds?
Show Solution
108. What are the coordinates of the child after 125 seconds?
109. When will the child have coordinates if the ride lasts 6 minutes? (There are multiple answers.)
Show Solution
37.5 seconds, 97.5 seconds, 157.5 seconds, 217.5 seconds, 277.5 seconds, 337.5 seconds
110. When will the child have coordinates if the ride lasts 6 minutes?
Glossary
- cosine function
- the x-value of the point on a unit circle corresponding to a given angle
- Pythagorean Identity
- a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle plus the square of the sine of that angle equals 1
- sine function
- the y-value of the point on a unit circle corresponding to a given angle