Chapter 4.2: Non-right Triangles: Law of Sines
Learning Objectives
In this section, you will:
- Use the Law of Sines to solve oblique triangles.
- Find the area of an oblique triangle using the sine function.
- Solve applied problems using the Law of Sines.
Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees, whereas the angle of elevation measured by the second station is 15 degrees. How can we determine the altitude of the aircraft? We see in (Figure) that the triangle formed by the aircraft and the two stations is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-right triangles.

Using the Law of Sines to Solve Oblique Triangles
In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming two right triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first having to create right triangles.
Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the measurements of all three angles and all three sides. To do so, we need to start with at least three of these values, including at least one of the sides. We will investigate three possible oblique triangle problem situations:
- ASA (angle-side-angle) We know the measurements of two angles and the included side. See (Figure).
Figure 2. - AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known angles. See (Figure).
Figure 3. - SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides. See (Figure).
Figure 4.
Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see how this statement is derived by considering the triangle shown in (Figure).

Using the right triangle relationships, we know that and
Solving both equations for
gives two different expressions for

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines.

Note the standard way of labeling triangles: angle (alpha) is opposite side
angle
(beta) is opposite side
and angle
(gamma) is opposite side
See (Figure).
While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers are rounded to the nearest tenth, unless otherwise specified.

Law of Sines
Given a triangle with angles and opposite sides labeled as in (Figure), the ratio of the measurement of an angle to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will be equal. The Law of Sines is based on proportions and is presented symbolically two ways.


To solve an oblique triangle, use any pair of applicable ratios.
Solving for Two Unknown Sides and Angle of an AAS Triangle
Solve the triangle shown in (Figure) to the nearest tenth.

Show Solution
The three angles must add up to 180 degrees. From this, we can determine that

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that angle and its corresponding side
We can use the following proportion from the Law of Sines to find the length of

Similarly, to solve for we set up another proportion.

Therefore, the complete set of angles and sides is

Try It
Solve the triangle shown in (Figure) to the nearest tenth.

Show Solution
Using The Law of Sines to Solve SSA Triangles
We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In some cases, more than one triangle may satisfy the given criteria, which we describe as an ambiguous case. Triangles classified as SSA, those in which we know the lengths of two sides and the measurement of the angle opposite one of the given sides, may result in one or two solutions, or even no solution.
Possible Outcomes for SSA Triangles
Oblique triangles in the category SSA may have four different outcomes. (Figure) illustrates the solutions with the known sides and
and known angle

Solving an Oblique SSA Triangle
Solve the triangle in (Figure) for the missing side and find the missing angle measures to the nearest tenth.

Show Solution
Use the Law of Sines to find angle and angle
and then side
Solving for
we have the proportion

However, in the diagram, angle appears to be an obtuse angle and may be greater than
. How did we get an acute angle, and how do we find the measurement of
Let’s investigate further. Dropping a perpendicular from
and viewing the triangle from a right angle perspective, we have (Figure). It appears that there may be a second triangle that will fit the given criteria.

The angle supplementary to is approximately equal to
, which means that
(Remember that the sine function is positive in both the first and second quadrants.) Solving for
we have

We can then use these measurements to solve the other triangle. Since is supplementary to the sum of
and
we have

Now we need to find and
We have

Finally,

To summarize, there are two triangles with an angle of , an adjacent side of 8, and an opposite side of 6, as shown in (Figure).

However, we were looking for the values for the triangle with an obtuse angle We can see them in the first triangle (a) in (Figure).
Try It
Given and
find the missing side and angles. If there is more than one possible solution, show both.
Show Solution
Solution 1

Solution 2

Solving for the Unknown Sides and Angles of a SSA Triangle
In the triangle shown in (Figure), solve for the unknown side and angles. Round your answers to the nearest tenth.

Show Solution
In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we know the angle and its corresponding side
and we know side
We will use this proportion to solve for

To find apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that there may be two values for
It is important to verify the result, as there may be two viable solutions, only one solution (the usual case), or no solutions.

In this case, if we subtract from 180^{\circ}, we find that there may be a second possible solution. Thus,
To check the solution, subtract both angles, 131.7^{\circ} and 85^{\circ}, from 180^{\circ}. This gives

which is impossible, and so
To find the remaining missing values, we calculate Now, only side
is needed. Use the Law of Sines to solve for
by one of the proportions.

The complete set of solutions for the given triangle is

Try It
Given find the missing side and angles. If there is more than one possible solution, show both. Round your answers to the nearest tenth.
Show Solution
Finding the Triangles That Meet the Given Criteria
Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10.
Show Solution
Using the given information, we can solve for the angle opposite the side of length 10. See (Figure).


We can stop here without finding the value of Because the range of the sine function is
it is impossible for the sine value to be 1.915. In fact, inputting
in a graphing calculator generates an ERROR DOMAIN. Therefore, no triangles can be drawn with the provided dimensions.
Try It
Determine the number of triangles possible given
Show Solution
two
Finding the Area of an Oblique Triangle Using the Sine Function
Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the area of an oblique triangle. Recall that the area formula for a triangle is given as where
is base and
is height. For oblique triangles, we must find
before we can use the area formula. Observing the two triangles in (Figure), one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric property
to write an equation for area in oblique triangles. In the acute triangle, we have
or
However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base
to form a right triangle. The angle used in calculation is
or

Thus,

Similarly,

Area of an Oblique Triangle
The formula for the area of an oblique triangle is given by

This is equivalent to one-half of the product of two sides and the sine of their included angle.
Finding the Area of an Oblique Triangle
Find the area of a triangle with sides and angle
Round the area to the nearest integer.
Show Solution
Using the formula, we have

Try It
Find the area of the triangle given Round the area to the nearest tenth.
Show Solution
about
Solving Applied Problems Using the Law of Sines
The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and motion.
Finding an Altitude
Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in (Figure). Round the altitude to the nearest tenth of a mile.

Show Solution
To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side and then use right triangle relationships to find the height of the aircraft,
Because the angles in the triangle add up to 180 degrees, the unknown angle must be . This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

The distance from one station to the aircraft is about 14.98 miles.
Now that we know we can use right triangle relationships to solve for

The aircraft is at an altitude of approximately 3.9 miles.
The diagram shown in (Figure) represents the height of a blimp flying over a football stadium. Find the height of the blimp if the angle of elevation at the southern end zone, point A, is , the angle of elevation from the northern end zone, point
is
, and the distance between the viewing points of the two end zones is 145 yards.

Show Solution
161.9 yd.
Access these online resources for additional instruction and practice with trigonometric applications.
Key Equations
Law of Sines | ![]() |
Area for oblique triangles | ![]() |
Key Concepts
- The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
- According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side equals the other two ratios of angle measure to opposite side.
- There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate equation to find the requested solution. See (Figure).
- The ambiguous case arises when an oblique triangle can have different outcomes.
- There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no solution. See (Figure) and (Figure).
- The Law of Sines can be used to solve triangles with given criteria. See (Figure).
- The general area formula for triangles translates to oblique triangles by first finding the appropriate height value. See (Figure).
- There are many trigonometric applications. They can often be solved by first drawing a diagram of the given information and then using the appropriate equation. See (Figure).
Section Exercises
Verbal
- Describe the altitude of a triangle.
Show Solution
The altitude extends from any vertex to the opposite side or to the line containing the opposite side at a 90° angle.
2. Compare right triangles and oblique triangles.
3. When can you use the Law of Sines to find a missing angle?
Show Solution
When the known values are the side opposite the missing angle and another side and its opposite angle.
4. In the Law of Sines, what is the relationship between the angle in the numerator and the side in the denominator?
5. What type of triangle results in an ambiguous case?
Show Solution
A triangle with two given sides and a non-included angle.
Algebraic
For the following exercises, assume is opposite side
is opposite side
and
is opposite side
Solve each triangle, if possible. Round each answer to the nearest tenth.
6.
7.
Show Solution
8.
9.
Show Solution
10.
For the following exercises, use the Law of Sines to solve for the missing side for each oblique triangle. Round each answer to the nearest hundredth. Assume that angle is opposite side
angle
is opposite side
and angle
is opposite side
11. Find side when
Show Solution
12. Find side when
13. Find side when
Show Solution
For the following exercises, assume is opposite side
is opposite side
and
is opposite side
Determine whether there is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the nearest tenth.
14.
15.
Show Solution
one triangle,
16.
17.
Show Solution
two triangles, or
18.
19.
Show Solution
two triangles, or
20.
21.
Show Solution
two triangles, or
22.
23.
Show Solution
no triangle possible
For the following exercises, use the Law of Sines to solve, if possible, the missing side or angle for each triangle or triangles in the ambiguous case. Round each answer to the nearest tenth.
24. Find angle when
25. Find angle when
Show Solution
or
26. Find angle when
For the following exercises, find the area of the triangle with the given measurements. Round each answer to the nearest tenth.
27.
Show Solution
28.
29.
Show Solution
30.
Graphical
For the following exercises, find the length of side Round to the nearest tenth.

Show Solution


Show Solution


Show Solution

For the following exercises, find the measure of angle if possible. Round to the nearest tenth.

Show Solution


Show Solution

Notice that is an obtuse angle.
41.
Show Solution

For the following exercises, find the area of each triangle. Round each answer to the nearest tenth.

Show Solution


Show Solution


Show Solution


Show Solution
Extensions
50. Find the radius of the circle in (Figure). Round to the nearest tenth.

51. Find the diameter of the circle in (Figure). Round to the nearest tenth.

Show Solution
52. Find in (Figure). Round to the nearest tenth.

53. Find in (Figure). Round to the nearest tenth.

Show Solution
54. Solve both triangles in (Figure). Round each answer to the nearest tenth.

55. Find in the parallelogram shown in (Figure).

Show Solution
56. Solve the triangle in (Figure). (Hint: Draw a perpendicular from to
Round each answer to the nearest tenth.

57. Solve the triangle in (Figure). (Hint: Draw a perpendicular from to
Round each answer to the nearest tenth.

Show Solution
58. In (Figure), is not a parallelogram.
is obtuse. Solve both triangles. Round each answer to the nearest tenth.

Real-World Applications
59. A pole leans away from the sun at an angle of to the vertical, as shown in (Figure). When the elevation of the sun is
the pole casts a shadow 42 feet long on the level ground. How long is the pole? Round the answer to the nearest tenth.

Show Solution
51.4 feet
60. To determine how far a boat is from shore, two radar stations 500 feet apart find the angles out to the boat, as shown in (Figure). Determine the distance of the boat from station and the distance of the boat from shore. Round your answers to the nearest whole foot.

61. (Figure) shows a satellite orbiting Earth. The satellite passes directly over two tracking stations and
which are 69 miles apart. When the satellite is on one side of the two stations, the angles of elevation at
and
are measured to be
and
respectively. How far is the satellite from station
and how high is the satellite above the ground? Round answers to the nearest whole mile.

Show Solution
The distance from the satellite to station is approximately 1716 miles. The satellite is approximately 1706 miles above the ground.
62. A communications tower is located at the top of a steep hill, as shown in (Figure). The angle of inclination of the hill is A guy wire is to be attached to the top of the tower and to the ground, 165 meters downhill from the base of the tower. The angle formed by the guy wire and the hill is
Find the length of the cable required for the guy wire to the nearest whole meter.

63. The roof of a house is at a angle. An 8-foot solar panel is to be mounted on the roof and should be angled
relative to the horizontal for optimal results. (See (Figure)). How long does the vertical support holding up the back of the panel need to be? Round to the nearest tenth.

Show Solution
2.6 ft
64. Similar to an angle of elevation, an angle of depression is the acute angle formed by a horizontal line and an observer’s line of sight to an object below the horizontal. A pilot is flying over a straight highway. He determines the angles of depression to two mileposts, 6.6 km apart, to be and
as shown in (Figure). Find the distance of the plane from point
to the nearest tenth of a kilometer.

65. A pilot is flying over a straight highway. He determines the angles of depression to two mileposts, 4.3 km apart, to be and
, as shown in (Figure). Find the distance of the plane from point
to the nearest tenth of a kilometer.

Show Solution
5.6 km
66. In order to estimate the height of a building, two students stand at a certain distance from the building at street level. From this point, they find the angle of elevation from the street to the top of the building to be . They then move 300 feet closer to the building and find the angle of elevation to be
. Assuming that the street is level, estimate the height of the building to the nearest foot.
67. In order to estimate the height of a building, two students stand at a certain distance from the building at street level. From this point, they find the angle of elevation from the street to the top of the building to be . They then move 250 feet closer to the building and find the angle of elevation to be
. Assuming that the street is level, estimate the height of the building to the nearest foot.
Show Solution
371 ft
68. Points and
are on opposite sides of a lake. Point
is 97 meters from
The measure of angle
is determined to be
, and the measure of angle
is determined to be
. What is the distance from
to
rounded to the nearest whole meter?
69. A man and a woman standing miles apart spot a hot air balloon at the same time. If the angle of elevation from the man to the balloon is
, and the angle of elevation from the woman to the balloon is
, find the altitude of the balloon to the nearest foot.
Show Solution
5936 ft
70. Two search teams spot a stranded climber on a mountain. The first search team is 0.5 miles from the second search team, and both teams are at an altitude of 1 mile. The angle of elevation from the first search team to the stranded climber is . The angle of elevation from the second search team to the climber is
. What is the altitude of the climber? Round to the nearest tenth of a mile.
71. A street light is mounted on a pole. A 6-foot-tall man is standing on the street a short distance from the pole, casting a shadow. The angle of elevation from the tip of the man’s shadow to the top of his head of . A 6-foot-tall woman is standing on the same street on the opposite side of the pole from the man. The angle of elevation from the tip of her shadow to the top of her head is
. If the man and woman are 20 feet apart, how far is the street light from the tip of the shadow of each person? Round the distance to the nearest tenth of a foot.
Show Solution
24.1 ft
72. Three cities, and
are located so that city
is due east of city
If city
is located 35^{\circ} west of north from city
and is 100 miles from city
and 70 miles from city
how far is city
from city
Round the distance to the nearest tenth of a mile.
73. Two streets meet at an angle. At the corner, a park is being built in the shape of a triangle. Find the area of the park if, along one road, the park measures 180 feet, and along the other road, the park measures 215 feet.
Show Solution
19,056
74. Brian’s house is on a corner lot. Find the area of the front yard if the edges measure 40 and 56 feet, as shown in (Figure).

75. The Bermuda triangle is a region of the Atlantic Ocean that connects Bermuda, Florida, and Puerto Rico. Find the area of the Bermuda triangle if the distance from Florida to Bermuda is 1030 miles, the distance from Puerto Rico to Bermuda is 980 miles, and the angle created by the two distances is 62°.
Show Solution
445,624 square miles
A yield sign measures 30 inches on all three sides. What is the area of the sign?
Naomi bought a modern dining table whose top is in the shape of a triangle. Find the area of the table top if two of the sides measure 4 feet and 4.5 feet, and the smaller angles measure and 42°, as shown in (Figure).

Show Solution
8.65
Glossary
- altitude
- a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an obtuse triangle, to the line containing the opposite side, forming two right triangles
- ambiguous case
- a scenario in which more than one triangle is a valid solution for a given oblique SSA triangle
- Law of Sines
- states that the ratio of the measurement of one angle of a triangle to the length of its opposite side is equal to the remaining two ratios of angle measure to opposite side; any pair of proportions may be used to solve for a missing angle or side
- oblique triangle
- any triangle that is not a right triangle