Exercises: Special Products (5.4)
Exercises: Square a Binomial Using the Binomial Squares Pattern
Instructions: For questions 1-20, square each binomial using the Binomial Squares Pattern.
Solution
[latex]{q}^{2}+24q+144[/latex]
Solution
[latex]{x}^{2}+\frac{4}{3}x+\frac{4}{9}[/latex]
Solution
[latex]{y}^{2}-12y+36[/latex]
Solution
[latex]{p}^{2}-26p+169[/latex]
Solution
[latex]16{a}^{2}+80a+100[/latex]
Solution
[latex]9{z}^{2}+\frac{6}{5}z+\frac{1}{25}[/latex]
Solution
[latex]4{y}^{2}-12yz+9{z}^{2}[/latex]
Solution
[latex]\frac{1}{64}{x}^{2}-\frac{1}{36}xy+\frac{1}{81}{y}^{2}[/latex]
Solution
[latex]25{u}^{4}+90{u}^{2}+81[/latex]
Solution
[latex]64{p}^{6}-48{p}^{3}+9[/latex]
Exercises: Multiply Conjugates Using the Product of Conjugates Pattern
Instructions: For questions 21-44, multiply each pair of conjugates using the Product of Conjugates Pattern.
Solution
[latex]{c}^{2}-25[/latex]
Solution
[latex]{b}^{2}-\frac{36}{49}[/latex]
Solution
[latex]64{j}^{2}-16[/latex]
Solution
[latex]81{c}^{2}-25[/latex]
Solution
[latex]169-{q}^{2}[/latex]
Solution
[latex]16-36{y}^{2}[/latex]
Solution
[latex]49{w}^{2}-100{x}^{2}[/latex]
Solution
[latex]{p}^{2}-\frac{16}{25}{q}^{2}[/latex]
Solution
[latex]{x}^{2}{y}^{2}-81[/latex]
Solution
[latex]{r}^{2}{s}^{2}-\frac{4}{49}[/latex]
Solution
[latex]36{m}^{6}-16{n}^{10}[/latex]
Solution
[latex]225{m}^{4}-64{n}^{8}[/latex]
Exercises: Recognize and Use the Appropriate Special Product Pattern
Instructions: For questions 45-48, find each product.
45.
a. [latex]\left(p-3\right)\left(p+3\right)[/latex]
b. [latex]{\left(t-9\right)}^{2}[/latex]
c. [latex]{\left(m+n\right)}^{2}[/latex]
d. [latex]\left(2x+y\right)\left(x-2y\right)[/latex]
46.
a. [latex]{\left(2r+12\right)}^{2}[/latex]
b. [latex]\left(3p+8\right)\left(3p-8\right)[/latex]
c. [latex]\left(7a+b\right)\left(a-7b\right)[/latex]
d. [latex]{\left(k-6\right)}^{2}[/latex]
Solution
a. [latex]4{r}^{2}+48r+144[/latex]
b. [latex]9{p}^{2}-64[/latex]
c. [latex]7{a}^{2}-48ab-7{b}^{2}[/latex]
d. [latex]{k}^{2}-12k+36[/latex]
47.
a. [latex]{\left({a}^{5}-7b\right)}^{2}[/latex]
b. [latex]\left({x}^{2}+8y\right)\left(8x-{y}^{2}\right)[/latex]
c. [latex]\left({r}^{6}+{s}^{6}\right)\left({r}^{6}-{s}^{6}\right)[/latex]
d. [latex]{\left({y}^{4}+2z\right)}^{2}[/latex]
48.
a. [latex]\left({x}^{5}+{y}^{5}\right)\left({x}^{5}-{y}^{5}\right)[/latex]
b. [latex]{\left({m}^{3}-8n\right)}^{2}[/latex]
c. [latex]{\left(9p+8q\right)}^{2}[/latex]
d. [latex]\left({r}^{2}-{s}^{3}\right)\left({r}^{3}+{s}^{2}\right)[/latex]
Solution
a. [latex]{x}^{10}-{y}^{10}[/latex]
b. [latex]{m}^{6}-16{m}^{3}n+64{n}^{2}[/latex]
c. [latex]81{p}^{2}+144pq+64{q}^{2}[/latex]
d. [latex]{r}^{5}+{r}^{2}{s}^{2}-{r}^{3}{s}^{3}-{s}^{5}[/latex]
Exercises: Everyday Math
49. Mental math. You can use the product of conjugates pattern to multiply numbers without a calculator. Say you need to multiply [latex]47[/latex] times [latex]53[/latex]. Think of [latex]47[/latex] as [latex]50-3[/latex] and [latex]53[/latex] as [latex]50+3[/latex].
a. Multiply [latex]\left(50-3\right)\left(50+3\right)[/latex] by using the product of conjugates pattern, [latex]\left(a-b\right)\left(a+b\right)={a}^{2}-{b}^{2}[/latex].
b. Multiply [latex]47\cdot 53[/latex] without using a calculator.
c. Which way is easier for you? Why?
50. Mental math. You can use the binomial squares pattern to multiply numbers without a calculator. Say you need to square [latex]65[/latex]. Think of [latex]65[/latex] as [latex]60+5[/latex].
a. Multiply [latex]{\left(60+5\right)}^{2}[/latex] by using the binomial squares pattern, [latex]{\left(a+b\right)}^{2}={a}^{2}+2ab+{b}^{2}[/latex].
b. Square [latex]65[/latex] without using a calculator.
c. Which way is easier for you? Why?
Solution
a. [latex]4\text{,}225[/latex]
b. [latex]4\text{,}225[/latex]
c. Answers will vary.
Exercises: Writing Exercises
Solution
Answers will vary.
53. Marta did the following work on her homework paper:
[latex]\begin{array}{c}{\left(3-y\right)}^{2}\\ {3}^{2}-{y}^{2}\\ 9-{y}^{2}\end{array}[/latex]
Explain what is wrong with Marta’s work.
Solution
Answers will vary.