Instructions: For questions 1-36, solve each equation with fraction coefficients.
1. [latex]\frac{1}{4}x-\frac{1}{2}=-\frac{3}{4}[/latex]
2. [latex]\frac{3}{4}x-\frac{1}{2}=\frac{1}{4}[/latex]
Solution
[latex]x=1[/latex]
3. [latex]\frac{5}{6}y-\frac{2}{3}=-\frac{3}{2}[/latex]
4. [latex]\frac{5}{6}y-\frac{1}{3}=-\frac{7}{6}[/latex]
Solution
[latex]y=-1[/latex]
5. [latex]\frac{1}{2}a+\frac{3}{8}=\frac{3}{4}[/latex]
6. [latex]\frac{5}{8}b+\frac{1}{2}=-\frac{3}{4}[/latex]
Solution
[latex]b=-2[/latex]
7. [latex]2=\frac{1}{3}x-\frac{1}{2}x+\frac{2}{3}x[/latex]
8. [latex]2=\frac{3}{5}x-\frac{1}{3}x+\frac{2}{5}x[/latex]
Solution
[latex]x=3[/latex]
9. [latex]\frac{1}{4}m-\frac{4}{5}m+\frac{1}{2}m=-1[/latex]
10. [latex]\frac{5}{6}n-\frac{1}{4}n-\frac{1}{2}n=-2[/latex]
Solution
[latex]n=-24[/latex]
11. [latex]x+\frac{1}{2}=\frac{2}{3}x-\frac{1}{2}[/latex]
12. [latex]x+\frac{3}{4}=\frac{1}{2}x-\frac{5}{4}[/latex]
Solution
[latex]x=-4[/latex]
13. [latex]\frac{1}{3}w+\frac{5}{4}=w-\frac{1}{4}[/latex]
14. [latex]\frac{3}{2}z+\frac{1}{3}=z-\frac{2}{3}[/latex]
Solution
[latex]z=-2[/latex]
15. [latex]\frac{1}{2}x-\frac{1}{4}=\frac{1}{12}x+\frac{1}{6}[/latex]
16. [latex]\frac{1}{2}a-\frac{1}{4}=\frac{1}{6}a+\frac{1}{12}[/latex]
Solution
[latex]a=1[/latex]
17. [latex]\frac{1}{3}b+\frac{1}{5}=\frac{2}{5}b-\frac{3}{5}[/latex]
18. [latex]\frac{1}{3}x+\frac{2}{5}=\frac{1}{5}x-\frac{2}{5}[/latex]
Solution
[latex]x=-6[/latex]
19. [latex]1=\frac{1}{6}(12x-6)[/latex]
20. [latex]1=\frac{1}{5}(15x-10)[/latex]
Solution
[latex]x=1[/latex]
21. [latex]\frac{1}{4}\left(p-7\right)=\frac{1}{3}\left(p+5\right)[/latex]
22. [latex]\frac{1}{5}(q+3)=\frac{1}{2}(q-3)[/latex]
Solution
[latex]q=7[/latex]
23. [latex]\frac{1}{2}(x+4)=\frac{3}{4}[/latex]
24. [latex]\frac{1}{3}(x+5)=\frac{5}{6}[/latex]
Solution
[latex]x=-\frac{5}{2}[/latex]
25. [latex]\frac{5q-8}{5}=\frac{2q}{10}[/latex]
26. [latex]\frac{4m+2}{6}=\frac{m}{3}[/latex]
Solution
[latex]m=-1[/latex]
27. [latex]\frac{4n+8}{4}=\frac{n}{3}[/latex]
28. [latex]\frac{3p+6}{3}=\frac{p}{2}[/latex]
Solution
[latex]p=-4[/latex]
29. [latex]\frac{u}{3}-4=\frac{u}{2}-3[/latex]
30. [latex]\frac{v}{10}+1=\frac{v}{4}-2[/latex]
Solution
[latex]v=20[/latex]
31. [latex]\frac{c}{15}+1=\frac{c}{10}-1[/latex]
32. [latex]\frac{d}{6}+3=\frac{d}{8}+2[/latex]
Solution
[latex]d=-24[/latex]
33. [latex]\frac{3x+4}{2}+1=\frac{5x+10}{8}[/latex]
34. [latex]\frac{10y-2}{3}+3=\frac{10y+1}{9}[/latex]
Solution
[latex]y=-1[/latex]
35. [latex]\frac{7u-1}{4}-1=\frac{4u+8}{5}[/latex]
36. [latex]\frac{3v-6}{2}+5=\frac{11v-4}{5}[/latex]
Solution
[latex]v=4[/latex]
Instructions: For questions 37-52, solve each equation with decimal coefficients.
37. [latex]0.6y+3=9[/latex]
38. [latex]0.4y-4=2[/latex]
Solution
[latex]y=15[/latex]
39. [latex]3.6j-2=5.2[/latex]
40. [latex]2.1k+3=7.2[/latex]
Solution
[latex]k=2[/latex]
41. [latex]0.4x+0.6=0.5x-1.2[/latex]
42. [latex]0.7x+0.4=0.6x+2.4[/latex]
Solution
[latex]x=20[/latex]
43. [latex]0.23x+1.47=0.37x-1.05[/latex]
44. [latex]0.48x+1.56=0.58x-0.64[/latex]
Solution
[latex]x=22[/latex]
45. [latex]0.9x-1.25=0.75x+1.75[/latex]
46. [latex]1.2x-0.91=0.8x+2.29[/latex]
Solution
[latex]x=8[/latex]
47. [latex]0.05n+0.10(n+8)=2.15[/latex]
48. [latex]0.05n+0.10(n+7)=3.55[/latex]
Solution
[latex]n=19[/latex]
49. [latex]0.10d+0.25(d+5)=4.05[/latex]
50. [latex]0.10d+0.25(d+7)=5.25[/latex]
Solution
[latex]d=10[/latex]
51. [latex]0.05(q-5)+0.25q=3.05[/latex]
52. [latex]0.05(q-8)+0.25q=4.10[/latex]
Solution
[latex]q=15[/latex]
Instructions: For questions 55-58, answer the given writing exercises.
55. Explain how you find the least common denominator of [latex]\frac{3}{8}[/latex], [latex]\frac{1}{6}[/latex], and [latex]\frac{2}{3}[/latex].
56. If an equation has several fractions, how does multiplying both sides by the LCD make it easier to solve?
Solution
Answers will vary.
57. If an equation has fractions only on one side, why do you have to multiply both sides of the equation by the LCD?
58. In the equation [latex]0.35x+2.1=3.85[/latex] what is the LCD? How do you know?
Solution
100. Justifications will vary.