Exercises: Multiply Polynomials (5.3)
Exercises: Multiply a Polynomial by a Monomial
Solution
[latex]4w+40[/latex]
Solution
[latex]-3a-21[/latex]
4. [latex]-5\left(p+9\right)[/latex]
Solution
[latex]2x-14[/latex]
Solution
[latex]-3k+12[/latex]
Solution
[latex]{q}^{2}+5q[/latex]
Solution
[latex]-{b}^{2}-9b[/latex]
Solution
[latex]-{x}^{2}+10x[/latex]
Solution
[latex]24{r}^{2}+6rs[/latex]
Solution
[latex]12{x}^{2}-120x[/latex]
Solution
[latex]-27{a}^{2}-45a[/latex]
Solution
[latex]3{p}^{2}+30p+75[/latex]
Solution
[latex]-8{x}^{3}-16{x}^{2}+120x[/latex]
Solution
[latex]5{q}^{6}-10{q}^{4}+30{q}^{3}[/latex]
Solution
[latex]-8{y}^{3}-16{y}^{2}+120y[/latex]
Solution
[latex]5{q}^{5}-10{q}^{4}+30{q}^{3}[/latex]
Solution
[latex]-12{z}^{4}-48{z}^{3}+4{z}^{2}[/latex]
Solution
[latex]2{m}^{2}-9m[/latex]
34. [latex]\left(8j-1\right)j[/latex]
Solution
[latex]8w-48[/latex]
Solution
[latex]4x+40[/latex]
Solution
[latex]15r-360[/latex]
Solution
[latex]-3m-33[/latex]
43. [latex]-8\left(z-5\right)[/latex]
Solution
[latex]-8z+40[/latex]
Solution
[latex]{u}^{2}+5u[/latex]
Solution
[latex]{n}^{3}-3{n}^{2}[/latex]
Solution
[latex]24{x}^{2}+6xy[/latex]
Solution
[latex]55{p}^{2}-25pq[/latex]
Solution
[latex]3{v}^{2}+30v+75[/latex]
Solution
[latex]8{n}^{3}-8{n}^{2}+2n[/latex]
Solution
[latex]-8{y}^{3}-16{y}^{2}+120y[/latex]
Solution
[latex]5{q}^{5}-10{q}^{4}+30{q}^{3}[/latex]
Solution
[latex]-12{z}^{4}-48{z}^{3}+4{z}^{2}[/latex]
Solution
[latex]18{y}^{2}-9y[/latex]
Exercises: Multiply a Binomial by a Binomial
Instructions: For questions 65-68, multiply the following binomials using:
a. the Distributive Property
b. the FOIL method
c. the Vertical Method.
Solution
[latex]{w}^{2}+12w+35[/latex]
Solution
[latex]{p}^{2}+7p-44[/latex]
Exercises: Multiply a Binomial by a Binomial
Solution
[latex]{x}^{2}+11x+24[/latex]
Solution
[latex]{y}^{2}-8y+12[/latex]
Solution
[latex]{w}^{2}+3w-28[/latex]
Solution
[latex]{p}^{2}+7p-60[/latex]
Solution
[latex]6{p}^{2}+11p+5[/latex]
Solution
[latex]20{t}^{2}-88t-9[/latex]
Solution
[latex]15{x}^{2}-3xy-30x+6y[/latex]
Solution
[latex]2{a}^{2}+5ab+3{b}^{2}[/latex]
Solution
[latex]4{z}^{2}-24z-zy+6y[/latex]
Solution
[latex]{x}^{3}+2{x}^{2}+3x+6[/latex]
Solution
[latex]{x}^{4}+3{x}^{2}-40[/latex]
Solution
[latex]10{a}^{2}{b}^{2}+13ab-3[/latex]
Solution
[latex]24{p}^{2}{q}^{2}-42pq+15[/latex]
Exercises: Multiply a Trinomial by a Binomial
Instructions: For questions 95-98, multiply using:
a. the Distributive Property
b. the Vertical Method
Solution
[latex]{x}^{3}+9{x}^{2}+23x+15[/latex]
Solution
[latex]4{y}^{3}+33{y}^{2}+y-56[/latex]
Exercises: Multiply a Trinomial by a Binomial
Solution
[latex]{w}^{3}-16{w}^{2}+73w-70[/latex]
Solution
[latex]3{q}^{3}-11{q}^{2}-19q-5[/latex]
Exercises: Mixed Practice
Instructions: For questions 103-121, solve.
Solution
[latex]14y-13[/latex]
Solution
[latex]-11x-28[/latex]
Solution
[latex]15{q}^{3}-30{q}^{2}+55q[/latex]
Solution
[latex]{s}^{2}+2s-63[/latex]
Solution
[latex]{y}^{3}-{y}^{2}-2y[/latex]
Solution
[latex]3{n}^{3}-{n}^{2}-25n+28[/latex]
Solution
[latex]49{p}^{2}-100[/latex]
Solution
[latex]4{m}^{4}-3{m}^{3}-7{m}^{2}[/latex]
Solution
[latex]25{a}^{2}+70ab+49{b}^{2}[/latex]
Solution
[latex]16{y}^{2}-144{z}^{2}[/latex]
Exercises: Everyday Math
122. Mental math. You can use binomial multiplication to multiply numbers without a calculator. Say you need to multiply [latex]13[/latex] times [latex]15[/latex]. Think of [latex]13[/latex] as [latex]10+3[/latex] and [latex]15[/latex] as [latex]10+5[/latex].
a. Multiply [latex]\left(10+3\right)\left(10+5\right)[/latex] by the FOIL method.
b. Multiply [latex]13\cdot 15[/latex] without using a calculator.
c. Which way is easier for you? Why?
123. Mental math You can use binomial multiplication to multiply numbers without a calculator. Say you need to multiply [latex]18[/latex] times [latex]17[/latex]. Think of [latex]18[/latex] as [latex]20-2[/latex] and [latex]17[/latex] as [latex]20-3[/latex].
a. Multiply [latex]\left(20-2\right)\left(20-3\right)[/latex] by the FOIL method.
b. Multiply [latex]18\cdot 17[/latex] without using a calculator.
c. Which way is easier for you? Why?
Solution
a. [latex]306[/latex]
b. [latex]306[/latex]
c. Answers will vary.
Exercises: Writing Exercises
Solution
Answers will vary.
126. Multiply the following:[latex]\begin{array}{c}\left(x+2\right)\left(x-2\right)\\ \left(y+7\right)\left(y-7\right)\\ \left(w+5\right)\left(w-5\right)\end{array}[/latex]
Explain the pattern that you see in your answers.
127. Multiply the following:
[latex]\begin{array}{c}\left(m-3\right)\left(m+3\right)\\ \left(n-10\right)\left(n+10\right)\\ \left(p-8\right)\left(p+8\right)\end{array}[/latex]
Explain the pattern that you see in your answers.
Solution
Answers may vary.
128. Multiply the following:
[latex]\begin{array}{c}\left(p+3\right)\left(p+3\right)\\ \left(q+6\right)\left(q+6\right)\\ \left(r+1\right)\left(r+1\right)\end{array}[/latex]
Explain the pattern that you see in your answers.
129. Multiply the following:
[latex]\begin{array}{c}\left(x-4\right)\left(x-4\right)\\ \left(y-1\right)\left(y-1\right)\\ \left(z-7\right)\left(z-7\right)\end{array}[/latex]
Explain the pattern that you see in your answers.
Solution
Answers may vary.