Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
Exercises: Find the Equation of a Line (3.11)
Exercises: Find an Equation of the Line Given the Slope and [latex]{\color{White}{y}}[/latex]-Intercept
Instructions: For questions 1-16, find the equation of a line with given slope and [latex]y[/latex]-intercept. Write the equation in slope–intercept form.
1. slope [latex]3[/latex] and [latex]y[/latex]-intercept [latex](0,5)[/latex]
2. slope [latex]4[/latex] and [latex]y[/latex]-intercept [latex](0,1)[/latex]
Solution
[latex]y=4x+1[/latex]
3. slope [latex]6[/latex] and [latex]y[/latex]-intercept [latex](0,-4)[/latex]
4. slope [latex]8[/latex] and [latex]y[/latex]-intercept [latex](0,-6)[/latex]
Solution
[latex]y=8x-6[/latex]
5. slope [latex]-1[/latex] and [latex]y[/latex]-intercept [latex](0,3)[/latex]
6. slope [latex]-1[/latex] and [latex]y[/latex]-intercept [latex](0,7)[/latex]
Solution
[latex]y=-x+7[/latex]
7. slope [latex]-2[/latex] and [latex]y[/latex]-intercept [latex](0,-3)[/latex]
8. slope [latex]-3[/latex] and [latex]y[/latex]-intercept [latex](0,-1)[/latex]
Solution
[latex]y=-3x-1[/latex]
9. slope [latex]\frac{3}{5}[/latex] and [latex]y[/latex]-intercept [latex](0,-1)[/latex]
10. slope [latex]\frac{1}{5}[/latex] and [latex]y[/latex]-intercept [latex](0,-5)[/latex]
Solution
[latex]y=\frac{1}{5}x-5[/latex]
11. slope [latex]-\frac{3}{4}[/latex] and [latex]y[/latex]-intercept [latex](0,-2)[/latex]
12. slope [latex]-\frac{2}{3}[/latex] and [latex]y[/latex]-intercept [latex](0,-3)[/latex]
Solution
[latex]y=-\frac{2}{3}x-3[/latex]
13. slope [latex]0[/latex] and [latex]y[/latex]-intercept [latex](0,-1)[/latex]
14. slope [latex]0[/latex] and [latex]y[/latex]-intercept [latex](0,2)[/latex]
Solution
[latex]y=2[/latex]
15. slope [latex]-3[/latex] and [latex]y[/latex]-intercept [latex](0,0)[/latex]
16. slope [latex]-4[/latex] and [latex]y[/latex]-intercept [latex](0,0)[/latex]
Solution
[latex]y=-4x[/latex]
Exercises: Find the Equation of a Line Shown on a Graph
Instructions: For questions 17-24, find the equation of the line shown in each graph. Write the equation in slope–intercept form.
17.
18.
Solution
[latex]y=-2x+4[/latex]
19.
20.
Solution
[latex]y=\frac{3}{4}x+2[/latex]
21.
22.
Solution
[latex]y=-\frac{3}{2}x-1[/latex]
23.
24.
Solution
[latex]y=6[/latex]
Exercises: Find an Equation of the Line Given the Slope and a Point
Instructions: For questions 25-42, find the equation of a line with given slope and containing the given point. Write the equation in slope–intercept form.
25. [latex]m=\frac{5}{8}[/latex], point [latex](8,3)[/latex]
26. [latex]m=\frac{3}{8}[/latex], point [latex](8,2)[/latex]
Solution
[latex]y=\frac{3}{8}x-1[/latex]
27. [latex]m=\frac{1}{6}[/latex], point [latex](6,1)[/latex]
28. [latex]m=\frac{5}{6}[/latex], point [latex](6,7)[/latex]
Solution
[latex]y=\frac{5}{6}x+2[/latex]
29. [latex]m=-\frac{3}{4}[/latex], point [latex](8,-5)[/latex]
30. [latex]m=-\frac{3}{5}[/latex], point [latex](10,-5)[/latex]
Solution
[latex]y=-\frac{3}{5}x+1[/latex]
31. [latex]m=-\frac{1}{4}[/latex], point [latex](-12,-6)[/latex]
32. [latex]m=-\frac{1}{3}[/latex], point [latex](-9,-8)[/latex]
Solution
[latex]y=-\frac{1}{3}x-11[/latex]
33. Horizontal line containing [latex](-2,5)[/latex]
34. Horizontal line containing [latex](-1,4)[/latex]
Solution
[latex]y=4[/latex]
35. Horizontal line containing [latex]\left(-2,-3\right)[/latex]
36. Horizontal line containing [latex](-1,-7)[/latex]
Solution
[latex]y=-7[/latex]
37. [latex]m=-\frac{3}{2}[/latex], point [latex](-4,-3)[/latex]
38. [latex]m=-\frac{5}{2}[/latex], point [latex](-8,-2)[/latex]
Solution
[latex]y=-\frac{5}{2}x-22[/latex]
39. [latex]m=-7[/latex], point [latex](-1,-3)[/latex]
40. [latex]m=-4[/latex], point [latex](-2,-3)[/latex]
Solution
[latex]y=-4x-11[/latex]
41. Horizontal line containing [latex](2,-3)[/latex]
42. Horizontal line containing [latex](4,-8)[/latex]
Solution
[latex]y=-8[/latex]
Exercises: Find an Equation of the Line Given Two Points
Instructions: For questions 43-68, find the equation of a line containing the given points. Write the equation in slope–intercept form.
43. [latex]\left(2,6\right)[/latex] and [latex]\left(5,3\right)[/latex]
44. [latex]\left(3,1\right)[/latex] and [latex]\left(2,5\right)[/latex]
Solution
[latex]y=-4x+13[/latex]
45. [latex]\left(4,3\right)[/latex] and [latex]\left(8,1\right)[/latex]
46. [latex]\left(2,7\right)[/latex] and [latex]\left(3,8\right)[/latex]
Solution
[latex]y=x+5[/latex]
47. [latex]\left(-3,-4\right)[/latex] and [latex]\left(5-2\right)[/latex]
48. [latex]\left(-5,-3\right)[/latex] and [latex]\left(4,-6\right)[/latex]
Solution
[latex]y=-\frac{1}{3}x-\frac{14}{3}[/latex]
49. [latex]\left(-1,3\right)[/latex] and [latex]\left(-6,-7\right)[/latex]
50. [latex]\left(-2,8\right)[/latex] and [latex]\left(-4,-6\right)[/latex]
Solution
[latex]y=7x+22[/latex]
51. [latex]\left(6,-4\right)[/latex] and [latex]\left(-2,5\right)[/latex]
52. [latex]\left(3,-2\right)[/latex] and [latex]\left(-4,4\right)[/latex]
Solution
[latex]y=-\frac{6}{7}x+\frac{4}{7}[/latex]
53. [latex]\left(0,4\right)[/latex] and [latex]\left(2,-3\right)[/latex]
54. [latex]\left(0,-2\right)[/latex] and [latex]\left(-5,-3\right)[/latex]
Solution
[latex]y=\frac{1}{5}x-2[/latex]
55. [latex]\left(7,2\right)[/latex] and [latex]\left(7,-2\right)[/latex]
56. [latex]\left(4,2\right)[/latex] and [latex]\left(4,-3\right)[/latex]
Solution
[latex]x=4[/latex]
57. [latex]\left(-7,-1\right)[/latex] and [latex]\left(-7,-4\right)[/latex]
58. [latex]\left(-2,1\right)[/latex] and [latex]\left(-2,-4\right)[/latex]
Solution
[latex]x=-2[/latex]
59. [latex]\left(6,1\right)[/latex] and [latex]\left(0,1\right)[/latex]
60. [latex]\left(6,2\right)[/latex] and [latex]\left(-3,2\right)[/latex]
Solution
[latex]y=2[/latex]
61. [latex]\left(3,-4\right)[/latex] and [latex]\left(5,-4\right)[/latex]
62. [latex]\left(-6,-3\right)[/latex] and [latex]\left(-1,-3\right)[/latex]
Solution
[latex]y=-3[/latex]
63. [latex]\left(4,3\right)[/latex] and [latex]\left(8,0\right)[/latex]
64. [latex]\left(0,0\right)[/latex] and [latex]\left(1,4\right)[/latex]
Solution
[latex]y=4x[/latex]
65. [latex]\left(-2,-3\right)[/latex] and [latex]\left(-5,-6\right)[/latex]
66. [latex]\left(-3,0\right)[/latex] and [latex]\left(-7,-2\right)[/latex]
Solution
[latex]y=\frac{1}{2}x+\frac{3}{2}[/latex]
67. [latex]\left(8,-1\right)[/latex] and [latex]\left(8,-5\right)[/latex]
68. [latex]\left(3,5\right)[/latex] and [latex]\left(-7,5\right)[/latex]
Solution
[latex]y=5[/latex]
Exercises: Find an Equation of a Line Parallel to a Given Line
Instructions: For questions 69-84, find an equation of a line parallel to the given line and contains the given point. Write the equation in slope–intercept form.
69. line [latex]y=4x+2[/latex], point [latex]\left(1,2\right)[/latex]
70. line [latex]y=3x+4[/latex], point [latex]\left(2,5\right)[/latex]
Solution
[latex]y=3x-1[/latex]
71. line [latex]y=-2x-3[/latex], point [latex]\left(-1,3\right)[/latex]
72. line [latex]y=-3x-1[/latex], point [latex]\left(2,-3\right)[/latex]
Solution
[latex]y=-3x+3[/latex]
73. line [latex]3x-y=4[/latex], point [latex]\left(3,1\right)[/latex]
74. line [latex]2x-y=6[/latex], point [latex]\left(3,0\right)[/latex]
Solution
[latex]y=2x-6[/latex]
75. line [latex]4x+3y=6[/latex], point [latex]\left(0,-3\right)[/latex]
76. line [latex]2x+3y=6[/latex], point [latex]\left(0,5\right)[/latex]
Solution
[latex]y=-\frac{2}{3}x+5[/latex]
77. line [latex]x=-3[/latex], point [latex]\left(-2,-1\right)[/latex]
78. line [latex]x=-4[/latex], point [latex]\left(-3,-5\right)[/latex]
Solution
[latex]x=-3[/latex]
79. line [latex]x-2=0[/latex], point [latex]\left(1,-2\right)[/latex]
80. line [latex]x-6=0[/latex], point [latex]\left(4,-3\right)[/latex]
Solution
[latex]x=4[/latex]
81. line [latex]y=5[/latex], point [latex]\left(2,-2\right)[/latex]
82. line [latex]y=1[/latex], point [latex]\left(3,-4\right)[/latex]
Solution
[latex]y=-4[/latex]
83. line [latex]y+2=0[/latex], point [latex]\left(3,-3\right)[/latex]
84. line [latex]y+7=0[/latex], point [latex]\left(1,-1\right)[/latex]
Solution
[latex]y=-1[/latex]
Exercises: Find an Equation of a Line Perpendicular to a Given Line
Instructions: For questions 85-96, find an equation of a line perpendicular to the given line and contains the given point. Write the equation in slope–intercept form.
85. line [latex]y=-2x+3[/latex], point [latex]\left(2,2\right)[/latex]
86. line [latex]y=-x+5[/latex], point [latex]\left(3,3\right)[/latex]
Solution
[latex]y=x[/latex]
87. line [latex]y=\frac{3}{4}x-2[/latex], point [latex]\left(-3,4\right)[/latex]
88. line [latex]y=\frac{2}{3}x-4[/latex], point [latex]\left(2,-4\right)[/latex]
Solution
[latex]y=-\frac{3}{2}x-1[/latex]
89. line [latex]2x-3y=8[/latex], point [latex]\left(4,-1\right)[/latex]
90. line [latex]4x-3y=5[/latex], point [latex]\left(-3,2\right)[/latex]
Solution
[latex]y=-\frac{3}{4}x-\frac{1}{4}[/latex]
91. line [latex]2x+5y=6[/latex], point [latex]\left(0,0\right)[/latex]
92. line [latex]4x+5y=-3[/latex], point [latex]\left(0,0\right)[/latex]
Solution
[latex]y=\frac{5}{4}x[/latex]
93. line [latex]y-3=0[/latex], point [latex]\left(-2,-4\right)[/latex]
94. line [latex]y-6=0[/latex], point [latex]\left(-5,-3\right)[/latex]
Solution
[latex]x=-5[/latex]
95. line [latex]y[/latex]-axis, point [latex]\left(3,4\right)[/latex]
96. line [latex]y[/latex]-axis, point [latex]\left(2,1\right)[/latex]
Solution
[latex]y=1[/latex]
Exercises: Mixed Practice
Instructions: For questions 97-114, find the equation of each line. Write the equation in slope–intercept form.
97. Containing the points [latex]\left(4,3\right)[/latex] and [latex]\left(8,1\right)[/latex]
98. Containing the points [latex]\left(2,7\right)[/latex] and [latex]\left(3,8\right)[/latex]
Solution
[latex]y=x+5[/latex]
99. [latex]m=\frac{1}{6}[/latex], containing point [latex]\left(6,1\right)[/latex]
100. [latex]m=\frac{5}{6}[/latex], containing point [latex]\left(6,7\right)[/latex]
Solution
[latex]y=\frac{5}{6}x+2[/latex]
101. Parallel to the line [latex]4x+3y=6[/latex], containing point [latex]\left(0,-3\right)[/latex]
102. Parallel to the line [latex]2x+3y=6[/latex], containing point [latex]\left(0,5\right)[/latex]
Solution
[latex]y=-\frac{2}{3}x+5[/latex]
103. [latex]m=-\frac{3}{4}[/latex], containing point [latex]\left(8,-5\right)[/latex]
104. [latex]m=-\frac{3}{5}[/latex], containing point [latex]\left(10,-5\right)[/latex]
Solution
[latex]y=-\frac{3}{5}x+1[/latex]
105. Perpendicular to the line [latex]y-1=0[/latex], point [latex]\left(-2,6\right)[/latex]
106. Perpendicular to the line [latex]y[/latex]-axis, point [latex]\left(-6,2\right)[/latex]
Solution
[latex]y=2[/latex]
107. Containing the points [latex]\left(4,3\right)[/latex] and [latex]\left(8,1\right)[/latex]
108. Containing the points [latex]\left(-2,0\right)[/latex] and [latex]\left(-3,-2\right)[/latex]
Solution
[latex]y=x+2[/latex]
109. Parallel to the line [latex]x=-3[/latex], containing point [latex]\left(-2,-1\right)[/latex]
110. Parallel to the line [latex]x=-4[/latex], containing point [latex]\left(-3,-5\right)[/latex]
Solution
[latex]x=-3[/latex]
111. Containing the points [latex]\left(-3,-4\right)[/latex] and [latex]\left(2,-5\right)[/latex]
112. Containing the points [latex]\left(-5,-3\right)[/latex] and [latex]\left(4,-6\right)[/latex]
Solution
[latex]y=-\frac{1}{3}x-\frac{14}{3}[/latex]
113. Perpendicular to the line [latex]x-2y=5[/latex], containing point [latex]\left(-2,2\right)[/latex]
114. Perpendicular to the line [latex]4x+3y=1[/latex], containing point [latex]\left(0,0\right)[/latex]
Solution
[latex]y=\frac{3}{4}x[/latex]
Exercises: Everyday Math
Instructions: For questions 115-116, answer the given everyday math word problems.
115. Cholesterol. The age, [latex]x[/latex], and LDL cholesterol level, [latex]y[/latex], of two men are given by the points [latex]\left(18,68\right)[/latex] and [latex]\left(27,122\right)[/latex]. Find a linear equation that models the relationship between age and LDL cholesterol level.
116. Fuel consumption. The city mpg, [latex]x[/latex], and highway mpg, [latex]y[/latex], of two cars are given by the points [latex]\left(29,40\right)[/latex] and[latex]\left(19,28\right)[/latex]. Find a linear equation that models the relationship between city mpg and highway mpg.
Solution
[latex]y=1.2x+5.2[/latex]
Exercises: Writing Exercises
Instructions: For questions 117-118, answer the given writing exercises.
117. Why are all horizontal lines parallel?
118. Explain in your own words why the slopes of two perpendicular lines must have opposite signs.