"

Exercises: Divide Polynomials (5.6)

Exercises: Divide a Polynomial by a Monomial

Instructions: For questions 1-32, divide each polynomial by the monomial.
1. [latex]\frac{45y+36}{9}[/latex]

2. [latex]\frac{30b+75}{5}[/latex]
Solution

[latex]6b+15[/latex]


3. [latex]\frac{8{d}^{2}-4d}{2}[/latex]

4. [latex]\frac{42{x}^{2}-14x}{7}[/latex]
Solution

[latex]6{x}^{2}-2x[/latex]


5. [latex]\left(16{y}^{2}-20y\right)\div 4y[/latex]

6. [latex]\left(55{w}^{2}-10w\right)\div 5w[/latex]
Solution

[latex]11w-2[/latex]


7. [latex]\left(9{n}^{4}+6{n}^{3}\right)\div 3n[/latex]

8. [latex]\left(8{x}^{3}+6{x}^{2}\right)\div 2x[/latex]
Solution

[latex]4{x}^{2}+3x[/latex]


9. [latex]\frac{18{y}^{2}-12y}{-6}[/latex]

10. [latex]\frac{20{b}^{2}-12b}{-4}[/latex]
Solution

[latex]-5{b}^{2}+3b[/latex]


11. [latex]\frac{35{a}^{4}+65{a}^{2}}{-5}[/latex]

12. [latex]\frac{51{m}^{4}+72{m}^{3}}{-3}[/latex]
Solution

[latex]-17{m}^{4}-24{m}^{3}[/latex]


13. [latex]\frac{310{y}^{4}-200{y}^{3}}{5{y}^{2}}[/latex]

14. [latex]\frac{412{z}^{8}-48{z}^{5}}{4{z}^{3}}[/latex]
Solution

[latex]103{z}^{5}-12{z}^{2}[/latex]


15. [latex]\frac{46{x}^{3}+38{x}^{2}}{2{x}^{2}}[/latex]

16. [latex]\frac{51{y}^{4}+42{y}^{2}}{3{y}^{2}}[/latex]
Solution

[latex]17{y}^{2}+14[/latex]


17. [latex]\left(24{p}^{2}-33p\right)\div \left(-3p\right)[/latex]

18. [latex]\left(35{x}^{4}-21x\right)\div \left(-7x\right)[/latex]
Solution

[latex]-5{x}^{3}+3[/latex]


19. [latex]\left(63{m}^{4}-42{m}^{3}\right)\div \left(-7{m}^{2}\right)[/latex]

20. [latex]\left(48{y}^{4}-24{y}^{3}\right)\div \left(-8{y}^{2}\right)[/latex]
Solution

[latex]-6{y}^{2}+3y[/latex]


21. [latex]\left(63{a}^{2}{b}^{3}+72a{b}^{4}\right)\div \left(9ab\right)[/latex]

22. [latex]\left(45{x}^{3}{y}^{4}+60x{y}^{2}\right)\div \left(5xy\right)[/latex]
Solution

[latex]9{x}^{2}{y}^{3}+12y[/latex]


23. [latex]\frac{52{p}^{5}{q}^{4}+36{p}^{4}{q}^{3}-64{p}^{3}{q}^{2}}{4{p}^{2}q}[/latex]

24. [latex]\frac{49{c}^{2}{d}^{2}-70{c}^{3}{d}^{3}-35{c}^{2}{d}^{4}}{7c{d}^{2}}[/latex]
Solution

[latex]7c-10{c}^{2}d-5c{d}^{2}[/latex]


25. [latex]\frac{66{x}^{3}{y}^{2}-110{x}^{2}{y}^{3}-44{x}^{4}{y}^{3}}{11{x}^{2}{y}^{2}}[/latex]

26. [latex]\frac{72{r}^{5}{s}^{2}+132{r}^{4}{s}^{3}-96{r}^{3}{s}^{5}}{12{r}^{2}{s}^{2}}[/latex]
Solution

[latex]6{r}^{3}+11{r}^{2}s-8r{s}^{3}[/latex]


27. [latex]\frac{4{w}^{2}+2w-5}{2w}[/latex]

28. [latex]\frac{12{q}^{2}+3q-1}{3q}[/latex]
Solution

[latex]4q+1-\frac{1}{3q}[/latex]


29. [latex]\frac{10{x}^{2}+5x-4}{-5x}[/latex]

30. [latex]\frac{20{y}^{2}+12y-1}{-4y}[/latex]
Solution

[latex]-5y-3+\frac{1}{4y}[/latex]


31. [latex]\frac{36{p}^{3}+18{p}^{2}-12p}{6{p}^{2}}[/latex]

32. [latex]\frac{63{a}^{3}-108{a}^{2}+99a}{9{a}^{2}}[/latex]
Solution

[latex]7a-12+\frac{11}{a}[/latex]


Exercises: Divide a Polynomial by a Binomial

Instructions: For questions 33-54, divide each polynomial by the binomial.

33. [latex]\left({y}^{2}+7y+12\right)\div \left(y+3\right)[/latex]

34. [latex]\left({d}^{2}+8d+12\right)\div \left(d+2\right)[/latex]
Solution

[latex]d+6[/latex]


35. [latex]\left({x}^{2}-3x-10\right)\div \left(x+2\right)[/latex]

36. [latex]\left({a}^{2}-2a-35\right)\div \left(a+5\right)[/latex]
Solution

[latex]a-7[/latex]


37. [latex]\left({t}^{2}-12t+36\right)\div \left(t-6\right)[/latex]

38. [latex]\left({x}^{2}-14x+49\right)\div \left(x-7\right)[/latex]
Solution

[latex]x-7[/latex]


39. [latex]\left(6{m}^{2}-19m-20\right)\div \left(m-4\right)[/latex]

40. [latex]\left(4{x}^{2}-17x-15\right)\div \left(x-5\right)[/latex]
Solution

[latex]4x+3[/latex]


41. [latex]\left({q}^{2}+2q+20\right)\div \left(q+6\right)[/latex]

42. [latex]\left({p}^{2}+11p+16\right)\div \left(p+8\right)[/latex]
Solution

[latex]p+3-\frac{8}{p+8}[/latex]


43. [latex]\left({y}^{2}-3y-15\right)\div \left(y-8\right)[/latex]

44. [latex]\left({x}^{2}+2x-30\right)\div \left(x-5\right)[/latex]
Solution

[latex]x+7+\frac{5}{x-5}[/latex]


45. [latex]\left(3{b}^{3}+{b}^{2}+2\right)\div \left(b+1\right)[/latex]

46. [latex]\left(2{n}^{3}-10n+24\right)\div \left(n+3\right)[/latex]
Solution

[latex]2{n}^{2}-6n+8[/latex]


47. [latex]\left(2{y}^{3}-6y-36\right)\div \left(y-3\right)[/latex]

48. [latex]\left(7{q}^{3}-5q-2\right)\div \left(q-1\right)[/latex]
Solution

[latex]7{q}^{2}+7q+2[/latex]


49. [latex]\left({z}^{3}+1\right)\div \left(z+1\right)[/latex]

50. [latex]\left({m}^{3}+1000\right)\div \left(m+10\right)[/latex]
Solution

[latex]{m}^{2}-10m+100[/latex]


51. [latex]\left({a}^{3}-125\right)\div \left(a-5\right)[/latex]

52. [latex]\left({x}^{3}-216\right)\div \left(x-6\right)[/latex]
Solution

[latex]{x}^{2}+6x+36[/latex]


53. [latex]\left(64{x}^{3}-27\right)\div \left(4x-3\right)[/latex]

54. [latex]\left(125{y}^{3}-64\right)\div \left(5y-4\right)[/latex]
Solution

[latex]25{y}^{2}+20x+16[/latex]

Exercises: Everyday Math

Instructions: For questions 55-56, answer the given everyday math word problems.

55. Average cost. Pictures Plus produces digital albums. The company’s average cost (in dollars) to make [latex]x[/latex] albums is given by the expression [latex]\frac{7x+500}{x}[/latex].

a. Find the quotient by dividing the numerator by the denominator.
b. What will the average cost (in dollars) be to produce [latex]20[/latex] albums?


56. Handshakes. At a company meeting, every employee shakes hands with every other employee. The number of handshakes is given by the expression [latex]\frac{{n}^{2}-n}{2}[/latex], where [latex]n[/latex] represents the number of employees. How many handshakes will there be if there are [latex]10[/latex] employees at the meeting?
Solution

[latex]45[/latex]


Exercises: Writing Exercises

Instructions: For questions 57-58, answer the given writing exercises.
57. James divides [latex]48y+6[/latex] by 6 this way: [latex]\frac{48y+\cancel{6}}{\cancel{6}}=48y[/latex]. What is wrong with his reasoning?

58. Divide [latex]\frac{10{x}^{2}+x-12}{2x}[/latex] and explain with words how you get each term of the quotient.
Solution

Answers will vary.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Fanshawe Pre-Health Sciences Mathematics 1 Copyright © 2022 by Domenic Spilotro, MSc is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.