Singular value decomposition of a 4×5 matrix
Consider the matrix
![Rendered by QuickLaTeX.com \[A=\left(\begin{array}{lllll} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{array}\right)\]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-28d24d984f67ad81b9b95a203692b443_l3.png)
A singular value decomposition of this matrix is given by
, with
![Rendered by QuickLaTeX.com \[U=\left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{array}\right), \quad \tilde{S}=\left(\begin{array}{ccccc} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right), \quad V^T=\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{array}\right) .\]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-c0cafc8142f9b274f0810f35c3be8b50_l3.png)
Notice above that
has non-zero values only in its diagonal, and can be written as
![]()
with
. The rank of
(which is the number of non-zero elements on the diagonal matrix
) is thus
. We can check that
, and
.