"

Minimization of a convex quadratic function

Here we consider the problem of minimizing a convex quadratic function without any constraints. Specifically, consider the problem

p^ast := min_x : q(x) := frac{1}{2}x^TAx + b^Tx

where A=A^T in mathbf{R}^{n times n}, and b in mathbf{R}^n. We assume that q is convex, meaning that its Hessian A is positive semi-definite.

The optimality condition for an unconstrained problem is nabla q(x) = 0, which here reduces to

nabla q(x) = Ax+b = 0.

Case when A is positive-definite

When A is positive-definite, that is, it has only positive (non-zero) eigenvalues, then there is a unique minimizer. The above optimality condition provides it: x^ast = -A^{-1}b.

Degenerate case: a simple example

Consider the case with

q(x) = frac{1}{2}x_1^2 + b_1x_1 + b_2 x_2.

The optimality condition is

left(begin{array}{cc} 1 & 0 0 & 0 end{array} right) left(begin{array}{c} x_1 x_2 end{array} right) = left(begin{array}{c} b_1 b_2 end{array} right).

These equations are feasible if and only b_2 = 0 (that is, b is in the range of A). In that case, the set of optimal points are of the form x_1 = b_1x_2 arbitrary.

Otherwise, when b_2 ne 0, the optimality conditions are not feasible, and the minimum value is actually p^ast = -infty. It is only attained in the limit, for example with x_1 fixed arbitrarily, x_2 rightarrow infty, with sign of x_2 equal to that of -b_2.

General case

If A is not invertible, but b is in the range of A, then there exist x_0 in mathbf{R}^n such that b = -Ax_0. Then any point x such that x-x_0 is in the nullspace of A is optimal, since

q(x) = frac{1}{2}x^TAx-x_0^TAx = frac{1}{2}(x-x_0)^TA(x-x_0) - frac{1}{2}x_0^TAx_0.

In particular, x_0 is optimal, and the corresponding value of the problem is p^ast = -frac{1}{2}x_0^TAx_0.

If b is not in the range space of A, then there are no minimizing points. This means that the minimum is not attained. We can in fact show that p^ast = -infty, and construct a sequence of points that achieves this value in the limit. We simply invoke the fundamental theorem of linear algebra. For symmetric matrices, the theorem specializes to the fact that range and nullspace are orthogonal. Since b not in mbox{bf R}(A)b can be written as b = Ar+c, with cne0 and Ac =0. Set x(t) :=-t c, with t in mathbf{R}; since Ax(t) = 0, we obtain q(x(t)) = -b^T(tc) = -tc^Tc. Letting t rightarrow +infty achieves the desired result.

Proof via the eigenvalue decomposition

A constructive proof involves the eigenvalue decomposition of the symmetric matrix A. We have A = ULambda U^T, with Lambda a diagonal matrix containing the (non-negative) eigenvalues of A, and U an orthogonal matrix of eigenvectors. The original problem can be expressed in terms of the new variable bar{x} = U^Tx, as follows:

min_{bar{x}} : frac{1}{2} bar{x}^TLambda bar{x} + bar{b}^Tbar{x},

with bar{b}:= U^Tb. Now decompose Lambda as Lambda = mbox{bf diag}(Lambda_+,0) with Lambda_+ containing the positive eigenvalues. We decompose the variable bar{x} as bar{x} = (bar{x}_+,bar{x}_0), with vector bar{x}_+ (resp. bar{x}_0) the variables corresponding to the positive (resp. zero) eigenvalues. Decompose bar{b} similarly, as bar{b} = (bar{b}_+,bar{b}_0). The problem writes

min_{bar{x}_+,bar{x}_0} : frac{1}{2} bar{x}_+^TLambda_+ bar{x}_+ + bar{b}_+^Tbar{x}_+ + bar{b}_0^Tbar{x}_0.

The problem looks exactly like the simple 2D example above.

The optimality conditions then write

bar{x}_+ = Lambda_+^{-1}bar{b_+}, ;; 0 = bar{b}_0.

If bar{b}_0 = 0, the solutions are of the form x = Ubar{x} = U(Lambda_+^{-1}bar{b_+},bar{x}_0), with bar{x}_0 free. (We recover a unique solution when there are no zero eigenvalues, that is, A is invertible.)

Otherwise, there are no optimal points. Choosing bar{x} = (0,-tbar{b}_0), with t rightarrow +infty, achieves the optimal value p^ast = -infty.

License

Hyper-Textbook: Optimization Models and Applications Copyright © by L. El Ghaoui. All Rights Reserved.