A Simple 3×2 Matrix

Consider the 3 \times 2  matrix

    \[A = \begin{pmatrix} 3 & 4.5 \\ 2 & 1.2 \\-0.1 & 8.2 \end{pmatrix}.\]

The matrix can be interpreted as the collection of two column vectors: A=(a_{1}, a_{2}), where a_{j}‘s contain the columns of A:

    \[a_{1}=\begin{pmatrix} 3\\ 2\\-0.1\end{pmatrix}, a_{2}=\begin{pmatrix} 4.5\\ 1.2\\8.2\end{pmatrix}.\]

Geometrically, A represents 2 points in a 3-dimensional space.

Alternatively, we can interpret A as a collection of 3-row vectors in \mathbb{R}^2.

    \[A = \begin{pmatrix} b_{1}^{T}\\b_{2}^{T}\\b_{3}^{T} \end{pmatrix}.\]

where b_{i}‘s, i=1, 2, 3 contain the rows of A:

    \[b_{1}=\begin{pmatrix} 3\\ 4.5\end{pmatrix}, b_{2}=\begin{pmatrix} 2\\ 1.2\end{pmatrix}, b_{3}=\begin{pmatrix} -0.1\\ 8.2\end{pmatrix}.\]

Geometrically, A represents 3 points in a 2-dimensional space.

License

Hyper-Textbook: Optimization Models and Applications Copyright © by L. El Ghaoui. All Rights Reserved.

Share This Book