18 Solving triangular systems of equations: backwards substitution example
Consider the triangular system
![Rendered by QuickLaTeX.com R x=\left(\begin{array}{ccc} 3 & 8 & 3 \\ 0 & 6 & -1 \\ 0 & 0 & -3 \end{array}\right)\left(\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right)=\left(\begin{array}{c} 1 \\ 2 \\ -3 \end{array}\right)](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-eade9f297a71ef6cb32cd8b60507ef4c_l3.png)
we solve for the last variable first, obtaining (from the last equation)
. We plug this value of
into the first and second equation, obtaining a new triangular system in two variables
:
![Rendered by QuickLaTeX.com \left(\begin{array}{ll} 3 & 8 \\ 0 & 6 \end{array}\right)\left(\begin{array}{l} x_1 \\ x_2 \end{array}\right)=\left(\begin{array}{c} 1-3 x_3 \\ 2+x_3 \end{array}\right)=\left(\begin{array}{c} -2 \\ 3 \end{array}\right) .](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-3f91f805341e3d3bb88c4cb9188e5dae_l3.png)
We proceed by solving for the last variable . The last equation yields
. Plugging this value into the first equation gives
.
We can apply the idea to find the inverse of the square upper triangular matrix , by solving
![Rendered by QuickLaTeX.com R x^{(1)}=\left(\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right), R x^{(2)}=\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right), R x^{(3)}=\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right) .](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-efced3d20bf36e21e3582667550df3e8_l3.png)
The matrix is then the inverse of
. We find
![Rendered by QuickLaTeX.com R^{-1}=\left(\begin{array}{c|c|c|c|c} x^{(1)} & x^{(2)} \mid x^{(3)} \end{array}\right)=\left(\begin{array}{ccc} 1 / 3 & -4 / 9 & 13 / 27 \\ 0 & 1 / 6 & -1 / 18 \\ 0 & 0 & -1 / 3 \end{array}\right) .](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-0f298f98474d44e7a0b72fd529511101_l3.png)
As illustrated above, the inverse of a triangular matrix is triangular.