Singular value decomposition of a 4×5 matrix

Consider the matrix

A=\left(\begin{array}{lllll} 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \end{array}\right)

A singular value decomposition of this matrix is given by A=U \tilde{S} V^T, with

U=\left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{array}\right), \tilde{S}=\left(\begin{array}{ccccc} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right), \quad V^T=\left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2} \end{array}\right) .

Notice above that tilde{ {S}} has non-zero values only in its diagonal and can be written as

\tilde{S}=diag(S,0,0),  S:=diag(\sigma_1,\sigma_2,\sigma_3),

with \sigma_1=4, \sigma_2=3, \sigma_3=\sqrt{5}. The rank of A (which is the number of non-zero elements on the diagonal matrix \tilde{S}) is thus r=3<min(m,n). We can check that V^TV=VV^T=I_5, and UU^T=U^TU=I_4.

See also:

License

Hyper-Textbook: Optimization Models and Applications Copyright © by L. El Ghaoui. All Rights Reserved.

Share This Book