A two-dimensional toy optimization problem

As a toy example of an optimization problem in two variables, consider the problem

\min _x 0.9 x_1^2-0.4 x_1 x_2-0.6 x_2^2-6.4 x_1-0.8 x_2:-1 \leq x_1 \leq 2, \quad 0 \leq x_2 \leq 3 .

(Note that the term ‘‘subject to’’ has been replaced with the shorthand colon notation.)

The problem can be put in standard form

p^*:=\min _x f_0(x): f_i(x) \leq 0, \quad i=1, \ldots, m,

where:

  • the decision variable is \left(x_1, x_2\right) \in \mathbf{R}^2;
  • the objective function f_0: \mathbf{R}^2 \rightarrow \mathbf{R} , takes values
f_0(x):=0.9 x_1^2-0.4 x_1 x_2-0.6 x_2^2-6.4 x_1-0.8 x_2 ;
  • the constraint functions f_i: \mathbf{R}^n \rightarrow \mathbf{R}, i=1,2,3,4 take values
\begin{aligned} & f_1(x):=-x_1-1, \\ & f_2(x):=x_1-2, \\ & f_3(x):=-x_2, \\ & f_4(x):=x_2-3 . \end{aligned}
  • p^* is the optimal value, which turns out to be p^*=-10.2667.

See also:

License

Hyper-Textbook: Optimization Models and Applications Copyright © by L. El Ghaoui. All Rights Reserved.

Share This Book