A two-dimensional toy optimization problem
As a toy example of an optimization problem in two variables, consider the problem
![Rendered by QuickLaTeX.com \min _x 0.9 x_1^2-0.4 x_1 x_2-0.6 x_2^2-6.4 x_1-0.8 x_2:-1 \leq x_1 \leq 2, \quad 0 \leq x_2 \leq 3 .](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-463c271f97c59503067ae96be780bbf6_l3.png)
(Note that the term ‘‘subject to’’ has been replaced with the shorthand colon notation.)
The problem can be put in standard form
![Rendered by QuickLaTeX.com p^*:=\min _x f_0(x): f_i(x) \leq 0, \quad i=1, \ldots, m,](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-04d5db76d57fce1e9d0202bc1c83f018_l3.png)
where:
- the decision variable is
;
- the objective function
, takes values
![Rendered by QuickLaTeX.com f_0(x):=0.9 x_1^2-0.4 x_1 x_2-0.6 x_2^2-6.4 x_1-0.8 x_2 ;](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-8c5dd67efd38b78aff085f66e64093e7_l3.png)
- the constraint functions
take values
![Rendered by QuickLaTeX.com \begin{aligned} & f_1(x):=-x_1-1, \\ & f_2(x):=x_1-2, \\ & f_3(x):=-x_2, \\ & f_4(x):=x_2-3 . \end{aligned}](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-5564b76e30000baf532da738fa775484_l3.png)
is the optimal value, which turns out to be
.
See also: