"

12.4 The Formation of the Milky Way

Information about stellar populations holds vital clues to how our Galaxy was built up over time. The flattened disk shape of the Galaxy suggests that it formed through a process similar to the one that leads to the formation of a protostar. Building on this idea, astronomers first developed models that assumed the Galaxy formed from a single rotating cloud. But, as we shall see, this turns out to be only part of the story.

The Protogalactic Cloud and the Monolithic Collapse Model

Because the oldest stars—those in the halo and in globular clusters—are distributed in a sphere centered on the nucleus of the Galaxy, it makes sense to assume that the protogalactic cloud that gave birth to our Galaxy was roughly spherical. The oldest stars in the halo have ages of 12 to 13 billion years, so we estimate that the formation of the Galaxy began about that long ago. Then, just as in the case of star formation, the protogalactic cloud collapsed and formed a thin rotating disk. Stars born before the cloud collapsed did not participate in the collapse, but have continued to orbit in the halo to the present day as shown in Figure 12.16.

Monolithic Collapse Model for the Formation of the Galaxy

Monolithic Collapse Model for the Formation of the Galaxy. Panel 1 at upper left shows the gas cloud, drawn as a blue blob, at the beginning of its collapse. The axis of rotation (drawn in all four panels) is a vertical line above center with a counter-clockwise arrow around it indicating the direction of rotation. White arrows at the periphery of the cloud point toward the center illustrating the collapse. Panel 2 at upper right shows the gas cloud flattened a bit at the edges and thicker nearer the axis of rotation. Globular clusters are indicated as white dots outside the cloud. Panel 3 at lower left shows the cloud further flattened and continuing to collapse into a disk. Finally, panel 4 at lower right shows the galaxy much thinner, and now drawn in white to indicate that stars have formed in the disk. Globular clusters are evenly distributed around the galactic bulge.
Figure 12.16. According to this model, the Milky Way Galaxy initially formed from a rotating cloud of gas that collapsed due to gravity. Halo stars and globular clusters either formed prior to the collapse or were formed elsewhere. Stars in the disk formed later, when the gas from which they were made was already “contaminated” with heavy elements produced in earlier generations of stars.

Gravitational forces caused the gas in the thin disk to fragment into clouds or clumps with masses like those of star clusters. These individual clouds then fragmented further to form stars. Since the oldest stars in the disk are nearly as old as the youngest stars in the halo, the collapse must have been rapid (astronomically speaking), requiring perhaps no more than a few hundred million years.

Collision Victims and the Multiple Merger Model

In past decades, astronomers have learned that the evolution of the Galaxy has not been quite as peaceful as this monolithic collapse model suggests. In 1994, astronomers discovered a small new galaxy in the direction of the constellation of Sagittarius. The Sagittarius dwarf galaxy is currently about 70,000 light-years away from Earth and 50,000 light-years from the centre of the Galaxy. It is the closest galaxy known. Pictured in Figure 12.17. It is very elongated, and its shape indicates that it is being torn apart by our Galaxy’s gravitational tides—just as Comet Shoemaker-Levy 9 was torn apart when it passed too close to Jupiter in 1992.

The Sagittarius galaxy is much smaller than the Milky Way, with only about 150,000 stars, all of which seem destined to end up in the bulge and halo of our own Galaxy. But don’t sound the funeral bells for the little galaxy quite yet; the ingestion of the Sagittarius dwarf will take another 100 million years or so, and the stars themselves will survive.

Sagittarius Dwarf

Sagittarius Dwarf Galaxy. Superimposed on this greyscale image of the galactic center a contour map of the dwarf galaxy is drawn in red above and slightly to the right of center. The white stars in the contour map mark the locations of several globular clusters contained within the dwarf galaxy. The cross marks the center of the Milky Way. The horizontal line corresponds to the galactic plane. The blue outline on either side of the galactic plane corresponds to Herschel’s diagram of the Milky Way. The boxes mark regions where detailed studies of individual stars led to the discovery of this galaxy.
Figure 12.17. In 1994, British astronomers discovered a galaxy in the constellation of Sagittarius, located only about 50,000 light-years from the centre of the Milky Way and falling into our Galaxy. This image covers a region approximately 70° × 50° and combines a black-and-white view of the disk of our Galaxy with a red contour map showing the brightness of the dwarf galaxy. The dwarf galaxy lies on the other side of the galactic centre from us. The white stars in the red region mark the locations of several globular clusters contained within the Sagittarius dwarf galaxy. The cross marks the galactic centre. The horizontal line corresponds to the galactic plane. The blue outline on either side of the galactic plane corresponds to the infrared image in [link]. The boxes mark regions where detailed studies of individual stars led to the discovery of this galaxy.
Modification of Sagittarius Dwarf to Collide with Milky Way by R. Ibata (UBC), R. Wyse (JHU), R. Sword (IoA), NASA Media License.

Since that discovery, evidence has been found for many more close encounters between our Galaxy and other neighbour galaxies. When a small galaxy ventures too close, the force of gravity exerted by our Galaxy tugs harder on the near side than on the far side. The net effect is that the stars that originally belonged to the small galaxy are spread out into a long stream that orbits through the halo of the Milky Way as seen in Figure 12.18.

Streams in the Galactic Halo

Streams in the Galactic Halo. This illustration shows the Milky Way at bottom, with the disk tilted about 45 degrees from edge-on. Three streams of stars are shown tracing elliptical orbits around the galactic center. Two of the streams are close enough to the center to have their stars pass through the plane of the galaxy. One stream is so distant it orbits the entire galaxy and does not touch the disk at all.
Figure 12.18. When a small galaxy is swallowed by the Milky Way, its member stars are stripped away and form streams of stars in the galactic halo. This image is based on calculations of what some of these tidal streams might look like if the Milky Way swallowed 50 dwarf galaxies over the past 10 billion years.
Artist´s impression of the star and dust tail from the torn-to-pieces Sagittarius dwarf galaxy, currently being engulfed by the Milky Way by NASA/JPL-Caltech/R. Hurt (SSC/Caltech), Public Domain

Such a tidal stream can maintain its identity for billions of years. To date, astronomers have now identified streams originating from 12 small galaxies that ventured too close to the much larger Milky Way. Six more streams are associated with globular clusters. It has been suggested that large globular clusters, like Omega Centauri, are actually dense nuclei of cannibalized dwarf galaxies. The globular cluster M54 is now thought to be the nucleus of the Sagittarius dwarf we discussed earlier, which is currently merging with the Milky Way as shown in Figure 12.19. The stars in the outer regions of such galaxies are stripped off by the gravitational pull of the Milky Way, but the central dense regions may survive.

Globular Cluster M54

Globular Cluster M54. A nearly perfectly spherical cluster of stars, so dense that the central core appears as a bright patch of light rather than individual stars.
Figure 12.19. This beautiful Hubble Space Telescope image shows the globular cluster that is now believed to be the nucleus of the Sagittarius Dwarf Galaxy.
Messier 54 by ESA/Hubble & NASA, NASA Media License.

Calculations indicate that the Galaxy’s thick disk may be a product of one or more such collisions with other galaxies. Accretion of a satellite galaxy would stir up the orbits of the stars and gas clouds originally in the thin disk and cause them to move higher above and below the mid-plane of the Galaxy. Meanwhile, the Galaxy’s stars would add to the fluffed-up mix. If such a collision happened about 10 billion years ago, then any gas in the two galaxies that had not yet formed into stars would have had plenty of time to settle back down into the thin disk. The gas could then have begun forming subsequent generations of population I stars. This timing is also consistent with the typical ages of stars in the thick disk.

The Milky Way has more collisions in store. An example is the Canis Major dwarf galaxy, which has a mass of about 1% of the mass of the Milky Way. Already long tidal tails have been stripped from this galaxy, which have wrapped themselves around the Milky Way three times. Several of the globular clusters found in the Milky Way may also have come from the Canis Major dwarf, which is expected to merge gradually with the Milky Way over about the next billion years.

In about 3 billion years, the Milky Way itself will be swallowed up, since it and the Andromeda galaxy are on a collision course. Our computer models show that after a complex interaction, the two will merge to form a larger, more rounded galaxy, shown in Figure 12.20.

Collision of the Milky Way with Andromeda

Collision of the Milky Way with Andromeda. In panel 1, at upper left, the Andromeda galaxy looms large in the night sky. In panel 2, at top center, the interaction has begun with the Milky Way and Andromeda becoming visibly distorted as Andromeda gets closer to us. In panel 3, at upper right, the sky is ablaze with star forming regions and a riot of dust clouds and star clusters. In panel 4, at lower left, the galaxies further lose their spiral shapes, but dust lanes and star formation persists. By panel 5, at lower center, the two galactic nuclei fill the sky. Finally, in panel 6 at lower right, the nuclei have merged into a huge elliptical mass of stars.
Figure 12.20. In about 3 billion years, the Milky Way Galaxy and Andromeda Galaxy will begin a long process of colliding, separating, and then coming back together to form an elliptical galaxy. The whole interaction will take 3 to 4 billion years. These images show the following sequence: (1) In 3.75 billion years, Andromeda has approached the Milky Way. (2) New star formation fills the sky 3.85 billion years from now. (3) Star formation continues at 3.9 billion years. (4) The galaxy shapes change as they interact, with Andromeda being stretched and our Galaxy becoming warped, about 4 billion years from now. (5) In 5.1 billion years, the cores of the two galaxies are bright lobes. (6) In 7 billion years, the merged galaxies form a huge elliptical galaxy whose brightness fills the night sky. This artist’s illustrations show events from a vantage point 25,000 light-years from the centre of the Milky Way. However, we should mention that the Sun may not be at that distance throughout the sequence of events, as the collision readjusts the orbits of many stars within each galaxy.
Illustration Sequence of the Milky Way and Andromeda Galaxy Colliding by NASA,ESA, Z. Levay, R. van der Marel, STScl, T. Hallas, and A. Mellinger, NASA Media License.

We are thus coming to realize that “environmental influences” (and not just a galaxy’s original characteristics) play an important role in determining the properties and development of our Galaxy. In future chapters we will see that collisions and mergers are a major factor in the evolution of many other galaxies as well.

At the Sun’s distance from its centre, the Galaxy does not rotate like a solid wheel or a CD inside your player. Instead, the way individual objects turn around the centre of the Galaxy is more like the solar system. Stars, as well as the clouds of gas and dust, obey Kepler’s third law. Objects farther from the centre take longer to complete an orbit around the Galaxy than do those closer to the centre. In other words, stars (and interstellar matter) in larger orbits in the Galaxy trail behind those in smaller ones. This effect is called differential galactic rotation.

Differential rotation would appear to explain why so much of the material in the disk of the Milky Way is concentrated into elongated features that resemble spiral arms. No matter what the original distribution of the material might be, the differential rotation of the Galaxy can stretch it out into spiral features. Figure 12.21 shows the development of spiral arms from two irregular blobs of interstellar matter. Notice that as the portions of the blobs closest to the galactic centre move faster, those farther out trail behind.

Simplified Model for the Formation of Spiral Arms

Simplified Model for the Formation of Spiral Arms. At left, the illustration begins with two irregular blue blobs, one above the other, with a short curved arrow at top pointing to the right indicating the direction of rotation. The next frame, with a longer curved arrow, shows how parts of the initial blobs have moved toward each other, but the parts further away have moved less, giving the appearance of two small comets. In the next frame, the curved arrow covers about 180O, and the blobs are now even more curved and elongated. In the final frame at right, the curved arrow covers 270O, and the classic spiral shape has emerged.
Figure 12.21. This sketch shows how spiral arms might form from irregular clouds of interstellar material stretched out by the different rotation rates throughout the Galaxy. The regions farthest from the galactic centre take longer to complete their orbits and thus lag behind the inner regions. If this were the only mechanism for creating spiral arms, then over time the spiral arms would completely wind up and disappear. Since many galaxies have spiral arms, they must be long-lived, and there must be other processes at work to maintain them.

But this picture of spiral arms presents astronomers with an immediate problem. If that’s all there were to the story, differential rotation—over the roughly 13-billion-year history of the Galaxy—would have wound the Galaxy’s arms tighter and tighter until all semblance of spiral structure had disappeared. But did the Milky Way actually have spiral arms when it formed 13 billion years ago? And do spiral arms, once formed, last for that long a time?

With the advent of the Hubble Space Telescope, it has become possible to observe the structure of very distant galaxies and to see what they were like shortly after they began to form more than 13 billion years ago. What the observations show is that galaxies in their infancy had bright, clumpy star-forming regions, but no regular spiral structure.

Over the next few billion years, the galaxies began to “settle down.” The galaxies that were to become spirals lost their massive clumps and developed a central bulge. The turbulence in these galaxies decreased, rotation began to dominate the motions of the stars and gas, and stars began to form in a much quieter disk. Smaller star-forming clumps began to form fuzzy, not-very-distinct spiral arms. Bright, well-defined spiral arms began to appear only when the galaxies were about 3.6 billion years old. Initially, there were two well-defined arms. Multi-armed structures in galaxies like we see in the Milky Way appeared only when the universe was about 8 billion years old.

Scientists have used supercomputer calculations to model the formation and evolution of the arms. These calculations follow the motions of up to 100 million “star particles” to see whether gravitational forces can cause them to form spiral structure. What these calculations show is that giant molecular clouds have enough gravitational influence over their surroundings to initiate the formation of structures that look like spiral arms. These arms then become self-perpetuating and can survive for at least several billion years. The arms may change their brightness over time as star formation comes and goes, but they are not temporary features. The concentration of matter in the arms exerts sufficient gravitational force to keep the arms together over long periods of time.


Attribution

25.6 The Formation of the Galaxy” and “25.2 Spiral Structure” from Douglas College Astronomy 1105 by Douglas College Department of Physics and Astronomy, are licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted. Adapted from Astronomy 2e.

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Fanshawe College Astronomy Copyright © 2023 by Dr. Iftekhar Haque is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book