3.6 Review and Summary

Additional Information

Access this online video resource for additional instruction and practice with transformation of functions.

Key Equations

Vertical shift [latex]g\left(x\right)=f\left(x\right)+k\text{}[/latex] (up for [latex]\text{}k>0[/latex])
Horizontal shift [latex]g\left(x\right)=f\left(x-h\right)[/latex] (right for [latex]\text{}h>0[/latex])
Vertical reflection [latex]g\left(x\right)=-f\left(x\right)[/latex]
Horizontal reflection [latex]g\left(x\right)=f\left(-x\right)[/latex]
Vertical stretch [latex]g\left(x\right)=af\left(x\right)\text{}[/latex] ([latex]a>0[/latex])
Vertical compression [latex]g\left(x\right)=af\left(x\right)\text{}[/latex] ([latex]0 < a < 1[/latex])
Horizontal stretch [latex]g\left(x\right)=f\left(bx\right)[/latex] ([latex]0 < b < 1[/latex])
Horizontal compression [latex]g\left(x\right)=f\left(bx\right)\text{}[/latex] ([latex]b > 1[/latex])

Key Terms

  • Even Function – a function whose graph is unchanged by horizontal reflection, [latex]\text{}f\left(x\right)=f\left(-x\right)\text{}[/latex], and is symmetric about the [latex]y\text{-}[/latex]axis.
  • Horizontal Compression – a transformation that compresses a function’s graph horizontally, by multiplying the input by a constant [latex]\text{}b>1[/latex].
  • Horizontal Reflection – a transformation that reflects a function’s graph across the y-axis by multiplying the input by [latex]\text{}-1[/latex].
  • Horizontal Shift – a transformation that shifts a function’s graph left or right by adding a positive or negative constant to the input.
  • Horizontal Stretch – a transformation that stretches a function’s graph horizontally by multiplying the input by a constant [latex]0 < b < 1[/latex].
  • Odd Function – a function whose graph is unchanged by combined horizontal and vertical reflection, [latex]f\left(x\right)=-f\left(-x\right)[/latex]
  • Vertical Compression – a function transformation that compresses the function’s graph vertically by multiplying the output by a constant [latex]0 < a<1[/latex].
  • Vertical Reflection – a transformation that reflects a function’s graph across the x-axis by multiplying the output by [latex]\text{}-1[/latex].
  • Vertical Shift – a transformation that shifts a function’s graph up or down by adding a positive or negative constant to the output.
  • Vertical Stretch – a transformation that stretches a function’s graph vertically by multiplying the output by a constant [latex]\text{}a>1[/latex].

Key Concepts

Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions

License

Icon for the Creative Commons Attribution 4.0 International License

Math 3080 Preparation Copyright © 2022 by Erin Kox is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book