"

3.3 Graphing Functions Using Reflections about the Axes

Another transformation that can be applied to a function is a reflection over the x– or y-axis. A vertical reflection reflects a graph vertically across the x-axis, while a horizontal reflection reflects a graph horizontally across the y-axis. The reflections are shown in Figure 3-9.

 

Graph of the vertical and horizontal reflection of a function.
Figure 3-9: Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the x-axis. The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the y-axis.

Reflections

Given a function [latex]\text{}f\left(x\right)[/latex], a new function [latex]\text{}g\left(x\right)=-f\left(x\right)\text{}[/latex] is a vertical reflection of the function [latex]\text{}f\left(x\right)\text{}[/latex], sometimes called a reflection about (or over, or through) the x-axis.

Given a function [latex]\text{}f\left(x\right)\text{}[/latex], a new function [latex]\text{}g\left(x\right)=f\left(-x\right)\text{}[/latex] is a horizontal reflection of the function [latex]\text{}f\left(x\right)\text{}[/latex], sometimes called a reflection about the y-axis.

How To

Given a function, reflect the graph both vertically and horizontally.

  1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph about the x-axis.
  2. Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of the original graph about the y-axis.

Example 1: Reflecting a Graph Horizontally and Vertically

  1. Reflect the graph of [latex]\text{}s\left(t\right)=\sqrt{t}[/latex] (a) vertically and (b) horizontally.
  2. Reflect the graph of [latex]\text{}f\left(x\right)=|x-1|[/latex] (a) vertically and (b) horizontally.

Solution

Example 2: Reflecting a Tabular Function Horizontally and Vertically

1. A function [latex]\text{}f\left(x\right)\text{}[/latex] is given as Table 3. Create a table for the functions below.

  1. [latex]\text{}g\left(x\right)=-f\left(x\right)[/latex]
  2. [latex]\text{}h\left(x\right)=f\left(-x\right)[/latex]
Table 3
[latex]x[/latex] 2 4 6 8
[latex]f\left(x\right)[/latex] 1 3 7 11

2. A function [latex]\text{}f\left(x\right)\text{}[/latex] is given as Table 4. Create a table for the functions below.

  1. [latex]g\left(x\right)=-f\left(x\right)[/latex]
  2. [latex]h\left(x\right)=f\left(-x\right)[/latex]
Table 4
[latex]x[/latex] −2 0 2 4
[latex]f\left(x\right)[/latex] 5 10 15 20

Solution

Example 3: Applying a Learning Model Equation

A common model for learning has an equation similar to [latex]k\left(t\right)=-{2}^{-t}+1,\text{}[/latex] where [latex]k[/latex] is the percentage of mastery that can be achieved after [latex]t[/latex] practice sessions. This is a transformation of the function [latex]f\left(t\right)={2}^{t}[/latex] shown in Figure 3-10. Sketch a graph of [latex]k\left(t\right)[/latex].

Graph of k(t)
Figure 3-10

Analysis

As a model for learning, this function would be limited to a domain of [latex]\text{}t\ge 0\text{}[/latex], with corresponding range [latex]\text{}\left[0,1\right)[/latex].

Solution

Example 4: Graphing Functions

Given the toolkit function [latex]\text{}f\left(x\right)={x}^{2},\text{}[/latex] graph [latex]\text{}g\left(x\right)=-f\left(x\right)\text{}[/latex] and [latex]\text{}h\left(x\right)=f\left(-x\right)\text{}[/latex]. Take note of any surprising behaviour for these functions.

Solution

Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions

License

Icon for the Creative Commons Attribution 4.0 International License

Math 3080 Preparation Copyright © 2022 by Erin Kox is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.