"

1.9 Practice Questions

Verbal Questions

  1. What is the difference between a relation and a function?
  2. What is the difference between the input and the output of a function?
  3. Why does the vertical line test tell us whether the graph of a relation represents a function?
  4. How can you determine if a relation is a one-to-one function?
  5. Why does the horizontal line test tell us whether the graph of a function is one-to-one?

Odd Number Verbal Solutions

Algebraic Questions

For the following exercises, determine whether the relation represents a function.

  1. [latex]\left\{\left(a,b\right),\text{ }\left(c,d\right),\text{ }\left(a,c\right)\right\}[/latex]
  2. [latex]\left\{\left(a,b\right),\left(b,c\right),\left(c,c\right)\right\}[/latex]

For the following exercises, determine whether the relation represents [latex]\text{}y\text{}[/latex] as a function of [latex]\text{}x\text{}[/latex].

  1. [latex]5x+2y=10[/latex]
  2. [latex]y={x}^{2}[/latex]
  3. [latex]x={y}^{2}[/latex]
  4. [latex]3{x}^{2}+y=14[/latex]
  5. [latex]2x+{y}^{2}=6[/latex]
  6. [latex]y=-2{x}^{2}+40x[/latex]
  7. [latex]y=\frac{1}{x}[/latex]
  8. [latex]x=\frac{3y+5}{7y-1}[/latex]
  9. [latex]x=\sqrt{1-{y}^{2}}[/latex]
  10. [latex]y=\frac{3x+5}{7x-1}[/latex]
  11. [latex]{x}^{2}+{y}^{2}=9[/latex]
  12. [latex]2xy=1[/latex]
  13. [latex]x={y}^{3}[/latex]
  14. [latex]y={x}^{3}[/latex]
  15. [latex]y=\sqrt{1-{x}^{2}}[/latex]
  16. [latex]x=±\sqrt{1-y}[/latex]
  17. [latex]y=±\sqrt{1-x}[/latex]
  18. [latex]{y}^{2}={x}^{2}[/latex]
  19. [latex]{y}^{3}={x}^{2}[/latex]

For the following exercises, evaluate the function [latex]\text{}f\text{}[/latex] at the indicated values [latex]\text{ }f\left(-3\right),f\left(2\right),f\left(-a\right),-f\left(a\right),f\left(a+h\right)[/latex].

  1. [latex]f\left(x\right)=2x-5[/latex]
  2. [latex]f\left(x\right)=-5{x}^{2}+2x-1[/latex]
  3. [latex]f\left(x\right)=\sqrt{2-x}+5[/latex]
  4. [latex]f\left(x\right)=\frac{6x-1}{5x+2}[/latex]
  5. [latex]f\left(x\right)=|x-1|-|x+1|[/latex]
  6. Given the function [latex]\text{}g\left(x\right)=5-{x}^{2},\text{}[/latex] evaluate [latex]\text{}\frac{g\left(x+h\right)-g\left(x\right)}{h},\text{}h\ne 0[/latex]
  7. Given the function [latex]\text{}g\left(x\right)={x}^{2}+2x,\text{}[/latex] evaluate [latex]\text{}\frac{g\left(x\right)-g\left(a\right)}{x-a},\text{}x\ne a[/latex]
  8. Given the function [latex]\text{}k\left(t\right)=2t-1:[/latex]
    1. Evaluate [latex]\text{}k\left(2\right)[/latex]
    2. Solve [latex]\text{}k\left(t\right)=7[/latex]
  9. Given the function [latex]\text{}f\left(x\right)=8-3x:[/latex]
    1. Evaluate [latex]\text{}f\left(-2\right)[/latex]
    2. Solve [latex]\text{}f\left(x\right)=-1[/latex]
  10. Given the function [latex]\text{}p\left(c\right)={c}^{2}+c:[/latex]
    1. Evaluate [latex]\text{}p\left(-3\right)[/latex]
    2. Solve [latex]\text{}p\left(c\right)=2[/latex]
  11. Given the function [latex]\text{}f\left(x\right)={x}^{2}-3x:[/latex]
    1. Evaluate [latex]\text{}f\left(5\right)[/latex]
    2. Solve [latex]\text{}f\left(x\right)=4[/latex]
  12. Given the function [latex]\text{}f\left(x\right)=\sqrt{x+2}:[/latex]
    1. Evaluate [latex]\text{}f\left(7\right)[/latex]
    2. Solve [latex]\text{}f\left(x\right)=4[/latex]
  13. Consider the relationship [latex]\text{}3r+2t=18[/latex]
    1. Write the relationship as a function [latex]\text{}r=f\left(t\right)[/latex]
    2. Evaluate [latex]\text{}f\left(-3\right)[/latex]
    3. Solve [latex]\text{}f\left(t\right)=2[/latex]

Odd Number Algebraic Solutions

Graphical Questions

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

  1. Graph of relation.
  2. Graph of relation.
  3. Graph of relation.
  4. Graph of relation.
  5. Graph of relation.
  6. Graph of relation.
  7. Graph of relation.
  8. Graph of relation.
  9. Graph of relation.
  10. Graph of relation.
  11. Graph of relation.
  12. Graph of relation.
  13. Given the following graph,
    1. Evaluate [latex]\text{}f\left(-1\right)[/latex].
    2. Solve for [latex]\text{}f\left(x\right)=3[/latex].
      Graph of relation.
  14. Given the following graph,
    1. Evaluate [latex]\text{}f\left(0\right)[/latex].
    2. Solve for [latex]\text{}f\left(x\right)=-3[/latex].
      Graph of relation.
  15. Given the following graph,
    1. Evaluate [latex]\text{}f\left(4\right)[/latex].
    2. Solve for [latex]\text{}f\left(x\right)=1[/latex].
      Graph of relation.

For the following exercises, determine if the given graph is a one-to-one function.

  1. Graph of a circle.
  2. Graph of a parabola.
  3. Graph of a rotated cubic function.
  4. Graph of half of 1/x.
  5. Graph of a one-to-one function.

Odd Number Graphical Solutions

Numeric Questions

For the following exercises, determine whether the relation represents a function.

  1. [latex]\left\{\left(-1,-1\right),\left(-2,-2\right),\left(-3,-3\right)\right\}[/latex]
  2. [latex]\left\{\left(3,4\right),\left(4,5\right),\left(5,6\right)\right\}[/latex]
  3. [latex]\left\{\left(2,5\right),\left(7,11\right),\left(15,8\right),\left(7,9\right)\right\}[/latex]

For the following exercises, determine if the relation represented in table form represents [latex]\text{}y\text{}[/latex] as a function of [latex]\text{}x[/latex].

  1. [latex]x[/latex] 5 10 15
    [latex]y[/latex] 3 8 14
  2. [latex]x[/latex] 5 10 15
    [latex]y[/latex] 3 8 8
  3. [latex]x[/latex] 5 10 10
    [latex]y[/latex] 3 8 14

For the following exercises, use the function [latex]\text{}f\text{}[/latex] represented in Table 1-14.

Table 1-14
[latex]x[/latex] [latex]f\left(x\right)[/latex]
0 74
1 28
2 1
3 53
4 56
5 3
6 36
7 45
8 14
9 47
  1. Evaluate [latex]\text{}f\left(3\right)[/latex].
  2. Solve [latex]\text{}f\left(x\right)=1[/latex].

For the following exercises, evaluate the function [latex]\text{}f\text{}[/latex] at the values [latex]f\left(-2\right),\text{}f\left(-1\right),\text{}f\left(0\right),\text{}f\left(1\right)[/latex] and [latex]\text{}f\left(2\right)[/latex].

  1. [latex]f\left(x\right)=4-2x[/latex]
  2. [latex]f\left(x\right)=8-3x[/latex]
  3. [latex]f\left(x\right)=8{x}^{2}-7x+3[/latex]
  4. [latex]f\left(x\right)=3+\sqrt{x+3}[/latex]
  5. [latex]f\left(x\right)=\frac{x-2}{x+3}[/latex]
  6. [latex]f\left(x\right)={3}^{x}[/latex]

For the following exercises, evaluate the expressions, given functions [latex]f,\text{}\text{}g[/latex], and [latex]\text{}h:[/latex]

  • [latex]f\left(x\right)=3x-2[/latex]
  • [latex]g\left(x\right)=5-{x}^{2}[/latex]
  • [latex]h\left(x\right)=-2{x}^{2}+3x-1[/latex]
  1. [latex]3f\left(1\right)-4g\left(-2\right)[/latex]
  2. [latex]f\left(\frac{7}{3}\right)-h\left(-2\right)[/latex]

Odd Number Numeric Solutions

Technology Questions

For the following exercises, graph [latex]\text{}y={x}^{2}\text{}[/latex] on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

  1. [latex]\left[-0.1,\text{ }0.1\right][/latex]
  2. [latex]\left[-10,\text{ 10}\right][/latex]
  3. [latex]\left[-100,100\right][/latex]

For the following exercises, graph [latex]\text{}y={x}^{3}\text{}[/latex] on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

  1. [latex]\left[-0.1,\text{ 0}\text{.1}\right][/latex]
  2. [latex]\left[-10,\text{ 10}\right][/latex]
  3. [latex]\left[-100,\text{ 100}\right][/latex]

For the following exercises, graph [latex]\text{}y=\sqrt{x}\text{}[/latex] on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

  1. [latex]\left[0,\text{ 0}\text{.01}\right][/latex]
  2. [latex]\left[0,\text{ 100}\right][/latex]
  3. [latex]\left[0,\text{ 10,000}\right][/latex]

For the following exercises, graph [latex]y=\sqrt[3]{x}[/latex] on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

  1. [latex]\left[-0.001,\text{0.001}\right][/latex]
  2. [latex]\left[-1000,\text{1000}\right][/latex]
  3. [latex]\left[-1,000,000,\text{1,000,000}\right][/latex]

Odd Number Technology Solutions

Real-World Applications Questions

  1. The amount of garbage, [latex]\text{}G,\text{}[/latex] produced by a city with population [latex]\text{}p\text{}[/latex] is given by [latex]\text{}G=f\left(p\right)\text{}[/latex]. [latex]G\text{}[/latex] is measured in tons per week, and [latex]\text{}p\text{}[/latex] is measured in thousands of people.
    1. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this information in terms of the function [latex]\text{}f\text{}[/latex].
    2. Explain the meaning of the statement [latex]\text{}f\left(5\right)=2[/latex].
  2. The number of cubic yards of dirt, [latex]\text{}D,\text{}[/latex] needed to cover a garden with area [latex]\text{}a\text{}[/latex] square feet is given by [latex]\text{}D=g\left(a\right)[/latex].
    1. A garden with area 5000 ft2 requires 50 yd3 of dirt. Express this information in terms of the function [latex]\text{}g[/latex].
    2. Explain the meaning of the statement [latex]\text{}g\left(100\right)=1[/latex].
  3. Let [latex]\text{}f\left(t\right)\text{}[/latex] be the number of ducks in a lake [latex]\text{}t\text{}[/latex] years after 1990. Explain the meaning of each statement:
    1. [latex]f\left(5\right)=30[/latex]
    2. [latex]f\left(10\right)=40[/latex]
  4. Let [latex]\text{}h\left(t\right)\text{}[/latex] be the height above ground, in feet, of a rocket [latex]\text{}t\text{}[/latex] seconds after launching. Explain the meaning of each statement:
    1. [latex]h\left(1\right)=200[/latex]
    2. [latex]h\left(2\right)=350[/latex]
  5. Show that the function [latex]\text{}f\left(x\right)=3{\left(x-5\right)}^{2}+7\text{}[/latex] is not one-to-one.

Odd Number Real-World Application Solutions

Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions

License

Icon for the Creative Commons Attribution 4.0 International License

Math 3080 Preparation Copyright © 2022 by Erin Kox is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.