"

Final Thoughts

Works Cited

Aligning language models to follow instructions. (n.d.). Retrieved December 9, 2023, from https://openai.com/research/instruction-following

Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016, May 23). Machine Bias. ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Azaria, A. (2022). ChatGPT Usage and Limitations. https://hal.science/hal-03913837

Bandy, J., & Vincent, N. (2021). Addressing “Documentation Debt” in Machine Learning Research: A Retrospective Datasheet for BookCorpus (arXiv:2105.05241). arXiv. https://doi.org/10.48550/arXiv.2105.05241

Birhane, A., Kasirzadeh, A., Leslie, D., & Wachter, S. (2023). Science in the age of large language models. Nature Reviews Physics, 5(5), Article 5. https://doi.org/10.1038/s42254-023-00581-4

Boser, U. (2017, May 5). Talking to Yourself (Out Loud) Can Help You Learn. Harvard Business Review. https://hbr.org/2017/05/talking-to-yourself-out-loud-can-help-you-learn

Brandom, R. (2023, June 7). What languages dominate the internet? Rest of World. https://restofworld.org/2023/internet-most-used-languages/

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners (arXiv:2005.14165). arXiv. https://doi.org/10.48550/arXiv.2005.14165

Cao, Y., Zhou, L., Lee, S., Cabello, L., Chen, M., & Hershcovich, D. (2023). Assessing Cross-Cultural Alignment between ChatGPT and Human Societies: An Empirical Study. In S. Dev, V. Prabhakaran, D. Adelani, D. Hovy, & L. Benotti (Eds.), Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP) (pp. 53–67). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.c3nlp-1.7

CAP Recommendations to Aid in Adoption of New eGFR Equation. (n.d.). College of American Pathologists. Retrieved December 7, 2023, from https://www.cap.org/member-resources/articles/cap-recommendations-for-adoption-of-new-egfr-equation

Chaslot, G., & Monnier, S. (n.d.). AlgoTransparency. AlgoTransparency. Retrieved December 9, 2023, from https://algotransparency.org/

Chegg.org. (2023). 2023 Global Student Survey (p. 61). Chegg.org. https://8dfb1bf9-2f43-45af-abce-2877b9157e2c.usrfiles.com/ugd/8dfb1b_e9bad0aef091478397e6a9ff96651f6d.pdf

Chen, H. (Weixu). (2020, August 14). Personalizing math tests during COVID-19. Waterloo News. https://uwaterloo.ca/news/mathematics/personalizing-math-tests-during-covid-19

Clark, M. (2021, April 9). Students of color are getting flagged to their teachers because testing software can’t see them. The Verge. https://www.theverge.com/2021/4/8/22374386/proctorio-racial-bias-issues-opencv-facial-detection-schools-tests-remote-learning

Clay, G. (2023, October 4). Oral Exams and First-Pass Grading with ChatGPT. AutomatED: Teaching Better with Tech. https://automatedteach.com/p/oral-exams-firstpass-grading-chatgpt

Clay, G., & Lee, C. W. (2023, August 23). Embracing Constructive Dialogue and Oral Assessments in the Age of AI. Inside Higher Ed. https://www.insidehighered.com/opinion/views/2023/08/03/how-professors-can-use-dialogue-based-course-assessments-opinion

Collins, M. (n.d.). Statistical Machine Translation: IBM Models 1 and 2.

Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. Journal of Science Education and Technology, 32(3), 444–452. https://doi.org/10.1007/s10956-023-10039-y

Cowen, T., & Tabarrok, A. T. (2023). How to Learn and Teach Economics with Large Language Models, Including GPT (SSRN Scholarly Paper 4391863). https://doi.org/10.2139/ssrn.4391863

Deck, A. (2023, September 6). We tested ChatGPT in Bengali, Kurdish, and Tamil. It failed. Rest of World. https://restofworld.org/2023/chatgpt-problems-global-language-testing/

Delson, N., Baghdadchi, S., Ghazinejad, M., Lubarda, M., Minnes, M., Phan, A., Schurgers, C., & Qi, H. (2022, August 23). Can Oral Exams Increase Student Performance and Motivation? 2022 ASEE Annual Conference & Exposition. https://peer.asee.org/can-oral-exams-increase-student-performance-and-motivation

Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco, G., Groeneveld, D., Mitchell, M., & Gardner, M. (2021). Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus (arXiv:2104.08758). arXiv. https://doi.org/10.48550/arXiv.2104.08758

Dovidio, J. F., Kawakami, K., & Gaertner, S. L. (2002). Implicit and explicit prejudice and interracial interaction. Journal of Personality and Social Psychology, 82(1), 62–68. https://doi.org/10.1037/0022-3514.82.1.62

Dreyfus, H. L. (1965). Alchemy and Artificial Intelligence. RAND Corporation. https://www.rand.org/pubs/papers/P3244.html

Dubiansky, S. (2020, October 28). Students speak out on controversial lockdown browsers for online courses. Technician. https://www.technicianonline.com/news/students-speak-out-on-controversial-lockdown-browsers-for-online-courses/article_c9693924-1996-11eb-869a-4b90407243a0.html

Eaton, S. E. (2020, January 15). Cheating may be under-reported across Canada’s universities and colleges. The Conversation. http://theconversation.com/cheating-may-be-under-reported-across-canadas-universities-and-colleges-129292

Eaton, S. E. (2022). Contract Cheating in Canada: A Comprehensive Overview. In S. E. Eaton & J. Christensen Hughes (Eds.), Academic Integrity in Canada: An Enduring and Essential Challenge (pp. 165–187). Springer International Publishing. https://doi.org/10.1007/978-3-030-83255-1_8

Edwards, B. (2022, November 18). New Meta AI demo writes racist and inaccurate scientific literature, gets pulled. Ars Technica. https://arstechnica.com/information-technology/2022/11/after-controversy-meta-pulls-demo-of-ai-model-that-writes-scientific-papers/

Eliot, L. (2023, September 27). Does Take A Deep Breath As A Prompting Strategy For Generative AI Really Work Or Is It Getting Unfair Overworked Credit. Forbes > Innovation > AI. https://www.forbes.com/sites/lanceeliot/2023/09/27/does-take-a-deep-breath-as-a-prompting-strategy-for-generative-ai-really-work-or-is-it-getting-unfair-overworked-credit/?sh=3ef77d6518c3

Field, H. (2024, January 18). OpenAI announces first partnership with a university. CNBC. https://www.cnbc.com/2024/01/18/openai-announces-first-partnership-with-a-university.html

Frieder, S., Pinchetti, L., Chevalier, A., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P. C., & Berner, J. (2023). Mathematical Capabilities of ChatGPT (arXiv:2301.13867). arXiv. https://doi.org/10.48550/arXiv.2301.13867

Gardiner, B. (2018). “It’s a terrible way to go to work:” what 70 million readers’ comments on the Guardian revealed about hostility to women and minorities online. Feminist Media Studies, 18(4), 592–608. https://doi.org/10.1080/14680777.2018.1447334

Gewirtz, D. (2023, October 9). Can AI detectors save us from ChatGPT? I tried 5 online tools to find out. ZDNET. https://www.zdnet.com/article/can-ai-detectors-save-us-from-chatgpt-i-tried-5-online-tools-to-find-out/

Ging, D., & Siapera, E. (2018). Special issue on online misogyny. Feminist Media Studies, 18(4), 515–524. https://doi.org/10.1080/14680777.2018.1447345

Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 1464–1480. https://doi.org/10.1037//0022-3514.74.6.1464

Growcoot, M. (2023, November 3). Which AI Image Generator is The Most Biased? PetaPixel. https://petapixel.com/2023/11/03/which-ai-image-generator-is-the-most-biased/

Hall, D. (2019, December 11). The ELIZA Effect. 99% Invisible. https://99percentinvisible.org/episode/the-eliza-effect/

Heaven, W. D. (2022, November 18). Why Meta’s latest large language model survived only three days online. MIT Technology Review. https://www.technologyreview.com/2022/11/18/1063487/meta-large-language-model-ai-only-survived-three-days-gpt-3-science/

Hort, M., Chen, Z., Zhang, J. M., Harman, M., & Sarro, F. (2023). Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey (arXiv:2207.07068). arXiv. https://doi.org/10.48550/arXiv.2207.07068

Johnson, K. (2021, June 17). The Efforts to Make Text-Based AI Less Racist and Terrible | WIRED. https://www.wired.com/story/efforts-make-text-ai-less-racist-terrible/

Kopsaftis, E. (2020, December 4). Over 4700 signatures against the LockDown Browser at U of G. The Ontarion. https://theontarion.com/2020/12/04/over-4700-signatures-against-the-lockdown-browser-at-u-of-g/

Lederberg, J. (1987). How DENDRAL was conceived and born. Proceedings of ACM Conference on History of Medical Informatics, 5–19. https://doi.org/10.1145/41526.41528

Liang, W., Yuksekgonul, M., Mao, Y., Wu, E., & Zou, J. (2023). GPT detectors are biased against non-native English writers. Patterns, 4(7), 100779. https://doi.org/10.1016/j.patter.2023.100779

Lighthill, J. (1972). Artificial Intelligence. Cambridge University.

Little, O., & Richards, A. (2021, October 5). TikTok’s algorithm leads users from transphobic videos to far-right rabbit holes. Media Matters for America. https://www.mediamatters.org/tiktok/tiktoks-algorithm-leads-users-transphobic-videos-far-right-rabbit-holes

Liu, & Bridgeman, A. (2023, June 8). ChatGPT is old news: How do we assess in the age of AI writing co-pilots? – Teaching@Sydney. https://educational-innovation.sydney.edu.au/teaching@sydney/chatgpt-is-old-news-how-do-we-assess-in-the-age-of-ai-writing-co-pilots/

Luccioni, A. S., Akiki, C., Mitchell, M., & Jernite, Y. (2023). Stable Bias: Analyzing Societal Representations in Diffusion Models (arXiv:2303.11408). arXiv. https://doi.org/10.48550/arXiv.2303.11408

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). Dartmouth Summer Research Project on Artificial Intelligence.

McCrosky, J., & Geurkink, B. (2021). YouTube Regrets. https://foundation.mozilla.org/en/youtube/findings/

Murgia, M. (2023, July 23). Transformers: The Google scientists who pioneered an AI revolution. https://www.ft.com/content/37bb01af-ee46-4483-982f-ef3921436a50

Nelson, M. A. (2010). Oral Assessments: Improving Retention, Grades, and Understanding. PRIMUS, 21(1), 47–61. https://doi.org/10.1080/10511970902869176

Nicol, D. (2021). The power of internal feedback: Exploiting natural comparison processes. Assessment & Evaluation in Higher Education, 46(5), 756–778. https://doi.org/10.1080/02602938.2020.1823314

Nicol, D. (2022, May 31). “Turning Active Learning into Active Feedback”, Introductory Guide from Active Feedback Toolkit, Adam Smith Business School [Educational resource]. Figshare; National Teaching Repository. https://doi.org/10.25416/NTR.19929290.v3

Nicol, D., & Selvaretnam, G. (2022). Making internal feedback explicit: Harnessing the comparisons students make during two-stage exams. Assessment & Evaluation in Higher Education, 47(4), 507–522. https://doi.org/10.1080/02602938.2021.1934653

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe

Rettberg, J. W. (2022, December 6). ChatGPT is multilingual but monocultural, and it’s learning your values. Jill/Txt. https://jilltxt.net/right-now-chatgpt-is-multilingual-but-monocultural-but-its-learning-your-values/

Rose, J. (2023, February 21). ChatGPT as a teaching tool, not a cheating tool. THE Campus Learn, Share, Connect. https://www.timeshighereducation.com/campus/chatgpt-teaching-tool-not-cheating-tool

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

Sayre, E. C. (2014). Oral exams as a tool for teaching and assessment. Teaching Science.

Smith, C. (2023, March 13). Hallucinations Could Blunt ChatGPT’s Success—IEEE Spectrum. https://spectrum.ieee.org/ai-hallucination.

Snoswell, A. J., & Burgess, J. (2022, November 29). The Galactica AI model was trained on scientific knowledge – but it spat out alarmingly plausible nonsense. The Conversation. http://theconversation.com/the-galactica-ai-model-was-trained-on-scientific-knowledge-but-it-spat-out-alarmingly-plausible-nonsense-195445

System Development Corporation. (1986). SDI Large-Scale System Technology Study (p. 135).

Tiku, N., Schaul, K., & Chen, S. Y. (2023, November 1). These fake images reveal how AI amplifies our worst stereotypes. Washington Post. https://www.washingtonpost.com/technology/interactive/2023/ai-generated-images-bias-racism-sexism-stereotypes/

Wan, Y., Pu, G., Sun, J., Garimella, A., Chang, K.-W., & Peng, N. (2023). “Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in LLM-Generated Reference Letters (arXiv:2310.09219). arXiv. https://doi.org/10.48550/arXiv.2310.09219

Ward, D., Gibbs, A., Henkel, T., Loshbaugh, H. G., Siering, G., Williamson, J., & Kayser, M. (2023, December 1). Indecision About AI in Classes Is So Last Week. Inside Higher Ed. https://www.insidehighered.com/opinion/career-advice/2023/12/01/advice-about-ai-classroom-coming-new-year-opinion

Watkins, M. (2023a, January 6). Our Obsession with Cheating is Ruining Our Relationship with Students [Substack newsletter]. Rhetorica. https://marcwatkins.substack.com/p/our-obsession-with-cheating-is-ruining

Watkins, M. (2023b, January 30). It’s Time to Step off the AI Panic Carousel Before We Harm our Students [Substack newsletter]. Rhetorica. https://marcwatkins.substack.com/p/its-time-to-step-off-the-ai-panic

Wertheim, S. (2016, May 30). The Common Habit That Undermines Organizations’ Diversity Efforts. Fast Company. https://www.fastcompany.com/3060336/the-common-habit-that-undermines-organizations-diversity-efforts

Wertheim, S. (2023, April 26). ChatGPT insists that doctors are male and nurses female. Worthwhile Consulting. https://www.worthwhileconsulting.com/read-watch-listen/chatgpt-insists-that-doctors-are-male-and-nurses-female

West, M., Kraut, R., & Chew, H. E. (2022). I’d blush if I could: Closing gender divides in digital skills through education—UNESCO Digital Library. https://unesdoc.unesco.org/ark:/48223/pf0000367416.page=1

Wolfram, S. (2023, February 14). What Is ChatGPT Doing … and Why Does It Work? https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

Xu, A., Pathak, E., Wallace, E., Gururangan, S., Sap, M., & Klein, D. (2021). Detoxifying Language Models Risks Marginalizing Minority Voices (arXiv:2104.06390). arXiv. https://doi.org/10.48550/arXiv.2104.06390

Yee, K., Whittington, K., Doggette, E., & Uttich, L. (2023). ChatGPT assignments to use in your classroom today (First Edition). FCTL Press.