4.3 Solve Quadratic Equations Using the Quadratic Formula
Learning Objectives
By the end of this section, you will be able to:
- Solve quadratic equations using the Quadratic Formula
- Use the discriminant to predict the number and type of solutions of a quadratic equation
- Identify the most appropriate method to use to solve a quadratic equation
Try It
Before you get started, take this readiness quiz:
1) Evaluate
2) Simplify:
3) Simplify:
Solve Quadratic Equations Using the Quadratic Formula
When we solved quadratic equations in the last section by completing the square, we took the same steps every time. By the end of the exercise set, you may have been wondering ‘isn’t there an easier way to do this?’ The answer is ‘yes’. Mathematicians look for patterns when they do things over and over in order to make their work easier. In this section we will derive and use a formula to find the solution of a quadratic equation.
We have already seen how to solve a formula for a specific variable ‘in general’, so that we would do the algebraic steps only once, and then use the new formula to find the value of the specific variable. Now we will go through the steps of completing the square using the general form of a quadratic equation to solve a quadratic equation for
We start with the standard form of a quadratic equation and solve it for
Step 1: Isolate the variable terms on one side.
Step 2: Make the coefficient of
Step 3: Simplify.
Step 4: To complete the square, find
Step 5: The left side is a perfect square, factor it.
Step 6: Find the common denominator of the right side and write equivalent fractions with the common denominator.
Step 7: Simplify.
Step 8: Combine to one fraction.
Step 9: Use the square root property.
Step 10: Simplify the radical.
Step 11: Add
Step 12: Combine the terms on the right side.
This equation is the Quadratic Formula.
Quadratic Formula
The solutions to a quadratic equation of the form
To use the Quadratic Formula, we substitute the values of
Example 4.3.1
Solve by using the Quadratic Formula:
Solution
Step 1: Write the quadratic equation in standard form. Identify the
This equation is in standard form.
State the
Step 2: Write the quadratic formula. Then substitute in the values of
Substitute in
Step 3: Simplify the fraction.
Step 4: Solve for
Step 4: Check the solutions.
Put each answer in the original equation to check.
Substitute
Substitute
Try It
4) Solve by using the Quadratic Formula:
Solution
Try It
5) Solve by using the Quadratic Formula:
Solution
HOW TO
Solve a quadratic equation using the quadratic formula.
- Write the quadratic equation in standard form,
. Identify the values of , , and . - Write the Quadratic Formula. Then substitute in the values of
, , and . - Simplify.
- Check the solutions.
If you say the formula as you write it in each problem, you’ll have it memorized in no time! And remember, the Quadratic Formula is an EQUATION. Be sure you start with “
Example 4.3.2
Solve by using the Quadratic Formula:
Solution
Step 1: Write the equation in standard form by adding
This equation is now in standard form.
Step 2: Identify the values of
Step 3: Write the Quadratic Formula.
Step 4: Then substitute in the values of
Step 5: Simplify.
Step 6: Rewrite to show two solutions.
Step 7: Simplify.
Step 8: Check:
Try It
6) Solve by using the Quadratic Formula:
Solution
Try It
7) Solve by using the Quadratic Formula:
Solution
When we solved quadratic equations by using the Square Root Property, we sometimes got answers that had radicals. That can happen, too, when using the Quadratic Formula. If we get a radical as a solution, the final answer must have the radical in its simplified form.
Example 4.3.3
Solve by using the Quadratic Formula:
Solution
This equation is in standard form.
Step 1: Identify the values of
Step 2: Write the Quadratic Formula.
Step 3: Then substitute in the values of
Step 4: Simplify.
Step 5: Simplify the radical.
Step 6: Factor out the common factor in the numerator.
Step 7: Remove the common factors.
Step 8: Rewrite to show two solutions.
Step 9: Check:
We leave the check for you!
Try It
8) Solve by using the Quadratic Formula:
Solution
Try It
9) Solve by using the Quadratic Formula:
Solution
When we substitute
Example 4.3.4
Solve by using the Quadratic Formula:
Solution
This equation is in standard form
Step 1: Identify the values of
Step 2: Write the Quadratic Formula.
Step 3: Then substitute in the values of
Step 4: Simplify.
Step 5: Simplify the radical using complex numbers.
Step 6: Simplify the radical.
Step 7: Factor the common factor in the numerator.
Step 8: Remove the common factors.
Step 9: Rewrite in standard
Step 10: Write as two solutions.
Try It
10) Solve by using the Quadratic Formula:
Solution
Try It
11) Solve by using the Quadratic Formula:
Solution
Remember, to use the Quadratic Formula, the equation must be written in standard form,
Example 4.3.5
Solve by using the Quadratic Formula:
Solution
Step 1: Distribute to get the equation in standard form.
Step 2: This equation is now in standard form
Step 3: Identify the values of
Step 4: Write the Quadratic Formula.
Step 5: Then substitute in the values of
Step 6: Simplify.
Step 7: Simplify the radical.
Step 8: Factor the common factor in the numerator.
Step 9: Remove the common factors.
Step 10: Write as two solutions.
Step 11: Check:
We leave the check for you!
Try It
12) Solve by using the Quadratic Formula:
Solution
Try It
13) Solve by using the Quadratic Formula:
Solution
When we solved linear equations, if an equation had too many fractions we cleared the fractions by multiplying both sides of the equation by the LCD. This gave us an equivalent equation—without fractions— to solve. We can use the same strategy with quadratic equations.
Example 4.3.6
Solve by using the Quadratic Formula:
Solution
Step 1: Multiply both sides by the LCD,
Step 2: Multiply.
Step 3: Subtract
Step 4: Identify the values of
Step 5: Write the Quadratic Formula.
Step 6: Then substitute in the values of
Step 7: Simplify.
Step 8: Simplify the radical.
Step 9: Factor the common factor in the numerator.
Step 10: Remove the common factors.
Step 11: Rewrite to show two solutions.
Step 12: Check:
We leave the check for you!
Try It
14) Solve by using the Quadratic Formula:
Solution
Try It
15) Solve by using the Quadratic Formula:
Solution
Think about the equation
We will see in the next example how using the Quadratic Formula to solve an equation whose standard form is a perfect square trinomial equal to
Example 4.3.7
Solve by using the Quadratic Formula:
Solution
Step 1: Add
Step 2: Identify the values of
Step 3: Write the quadratic formula.
Step 4: Then substitute in the values of
Step 5: Simplify.
Step 6: Simplify the radical.
Step 7: Simplify the fraction.
Step 8: Check:
We leave the check for you!
Did you recognize that
Try It
16) Solve by using the Quadratic Formula:
Solution
Try It
17) Solve by using the Quadratic Formula:
Solution
Use the Discriminant to Predict the Number and Type of Solutions of a Quadratic Equation
When we solved the quadratic equations in the previous examples, sometimes we got two real solutions, one real solution, and sometimes two complex solutions. Is there a way to predict the number and type of solutions to a quadratic equation without actually solving the equation?
Yes, the expression under the radical of the Quadratic Formula makes it easy for us to determine the number and type of solutions. This expression is called the discriminant.
Discriminant
In the Quadratic Formula,
the quantity
Let’s look at the discriminant of the equations in some of the examples and the number and type of solutions to those quadratic equations.
Quadratic Equation (in standard form) |
Discriminant |
Value of the Discriminant | Number and Type of solutions |
---|---|---|---|
2 real | |||
1 real | |||
2 complex |
Using the Discriminant, , to Determine the Number and Type of Solutions of a Quadratic Equation
For a quadratic equation of the form
-
- If
, the equation has real solutions. - if
, the equation has real solution. - if
, the equation has complex solutions.
- If
Example 4.3.8
Determine the number of solutions to each quadratic equation.
a.
b.
c.
Solution
To determine the number of solutions of each quadratic equation, we will look at its discriminant.
a.
Step 1: The equation is in standard form, identify
Step 2: Write the discriminant.
Step 3: Substitute in the values of
Step 4: Simplify.
Since the discriminant is positive, there are
b.
Step 1: The equation is in standard form, identify
Step 2: Write the discriminant.
Step 3: Substitute in the values of
Step 4: Simplify.
Since the discriminant is negative, there are
c.
Step 1: The equation is in standard form, identify
Step 2: Write the discriminant.
Step 3: Substitute in the values of
Step 4: Simplify.
Since the discriminant is
Try It
18) Determine the number and type of solutions to each quadratic equation.
a.
b.
c.
Solution
a.
b.
c.
Try It
19) Determine the number and type of solutions to each quadratic equation.
a.
b.
c.
Solution
a.
b.
c.
Identify the Most Appropriate Method to Use to Solve a Quadratic Equation
We summarize the four methods that we have used to solve quadratic equations below.
Methods for Solving Quadratic Equations
- Factoring
- Square Root Property
- Completing the Square
- Quadratic Formula
Given that we have four methods to use to solve a quadratic equation, how do you decide which one to use? Factoring is often the quickest method and so we try it first. If the equation is
What about the method of Completing the Square? Most people find that method cumbersome and prefer not to use it. We needed to include it in the list of methods because we completed the square in general to derive the Quadratic Formula. You will also use the process of Completing the Square in other areas of algebra.
HOW TO
Identify the most appropriate method to solve a quadratic equation.
- Try Factoring first. If the quadratic factors easily, this method is very quick.
- Try the Square Root Property next. If the equation fits the form
or , it can easily be solved by using the Square Root Property. - Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.
The next example uses this strategy to decide how to solve each quadratic equation.
Example 4.3.9
Identify the most appropriate method to use to solve each quadratic equation.
a.
b.
c.
Solution
a.
Since the equation is in the
b.
We recognize that the left side of the equation is a perfect square trinomial, and so factoring will be the most appropriate method.
c.
Put the equation in standard form.
While our first thought may be to try factoring, thinking about all the possibilities for trial and error method leads us to choose the Quadratic Formula as the most appropriate method.
Try It
20) Identify the most appropriate method to use to solve each quadratic equation.
a.
b.
c.
Solution
a. Factoring
b. Square Root Property
c. Quadratic Formula
Try It
21) Identify the most appropriate method to use to solve each quadratic equation.
a.
b.
c.
Solution
a. Quadratic Formula
b. Factoring or Square Root Property
c. Square Root Property
Access these online resources for additional instruction and practice with using the Quadratic Formula.
Key Concepts
- Quadratic Formula
- The solutions to a quadratic equation of the form
, are given by the formula:
- The solutions to a quadratic equation of the form
- How to solve a quadratic equation using the Quadratic Formula.
- Write the quadratic equation in standard form,
. Identify the values of , , and . - Write the Quadratic Formula. Then substitute in the values of
, , and . - Simplify.
- Check the solutions.
- Write the quadratic equation in standard form,
- Using the Discriminant,
, to Determine the Number and Type of Solutions of a Quadratic Equation- For a quadratic equation of the form
, ,- If
, the equation has real solutions. - if
, the equation has real solution. - if
, the equation has complex solutions.
- If
- For a quadratic equation of the form
- Methods to Solve Quadratic Equations:
- Factoring
- Square Root Property
- Completing the Square
- Quadratic Formula
- How to identify the most appropriate method to solve a quadratic equation.
- Try Factoring first. If the quadratic factors easily, this method is very quick.
- Try the Square Root Property next. If the equation fits the form
or , it can easily be solved by using the Square Root Property. - Use the Quadratic Formula. Any other quadratic equation is best solved by using the Quadratic Formula.
Self Check
a) After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
b) What does this checklist tell you about your mastery of this section? What steps will you take to improve?
Glossary
discriminant
- In the Quadratic Formula,
, the quantity is called the discriminant.
In the Quadratic Formula, [latex]x=\frac{-b\pm\sqrt{{b}^{2}-4ac}}{2a}[/latex], the quantity [latex]b^2-4ac[/latex] is called the discriminant.