Chapter 4 – Fitness Principles

Principles of Adaptation to Stress

The human body adapts well when exposed to stress. The term stress, within the context of exercise, is defined as an exertion above the normal, everyday functioning. The specific activities that result in stress vary for each individual and depend on a person’s level of fitness. For example, a secretary who sits at a desk all day may push his/her cardiorespiratory system to its limits simply by walking up several flights of stairs. For an avid runner, resistance training may expose the runner’s muscles to muscular contractions the athlete is not accustomed to feeling. Although stress is relative to each individual, there are guiding principles in exercise that can help individuals manage how much stress they experience to avoid injury and optimize their body’s capacity to adapt. Knowing a little about these principles provides valuable insights needed for organizing an effective fitness plan.

Overload Principle

Consider the old saying, “No pain, no gain.” Does exercise really have to be painful, as this adage implies, to be beneficial? Absolutely not. If that were true, exercise would be a lot less enjoyable. Perhaps a better way to relay the same message would be to say that improvements are driven by stress. Physical stress, such as walking at a brisk pace or jogging, places increased stress on the regulatory systems that manage increased heart rate and blood pressure, increased energy production, increased breathing, and even increased sweating for temperature regulation. As these subsequent adaptations occur, the stress previously experienced during the same activity, feels less stressful in future sessions. As a result of the adaptation, more stress must be applied to the system in order to stimulate improvements, a principle known as the overload principle.

For example, a beginning weightlifter performs squats with 10 repetitions at 50 pounds. After 2 weeks of lifting this weight, the lifter notices the 50 pounds feels easier during the lift and afterwards causes less fatigue. The lifter adds 10 pounds and continues with the newly established stress of 60 pounds. The lifter will continue to get stronger until his/her maximum capacity has been reached, or the stress stays the same, at which point the lifter’s strength will simply plateau. This same principle can be applied, not only to gain muscular strength, but also to gain flexibility, muscular endurance, and cardiorespiratory endurance.

License

Icon for the Creative Commons Attribution 4.0 International License

Fitness for Paramedics: A Guide for Students at Cambrian College, 2nd Edition Copyright © 2024 by Lynn Kabaroff and Martin Dubuc is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book