11 Rational Exponents
* For
, the principal
root of
, is defined by :
If
is odd
![]()
If
is even
![Rendered by QuickLaTeX.com \[ \qquad \left\|\begin{matrix} y= x^{1/n} \qquad & \hbox{ if } \quad x > 0 \qquad & \hbox{ with }\quad y= x^{1/n}\quad \Longleftrightarrow \quad x=y^n \\ \\ 0\qquad & \hbox{ if } \quad x=0 & \\ \\ \hbox{ not defined }\qquad &\hbox{ if }\quad x < 0 \qquad & \end{matrix}\right. \]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-0c66cd7ddee57faf07bda6721336fcbf_l3.png)
![]()
![Rendered by QuickLaTeX.com \[ \quad \Big(x^n\Big)^{1/n} = \left\{\begin{matrix} x \qquad & \hbox{ if } \quad n \quad \hbox{ is odd } \\ \\ |x|\qquad & \hbox{ if } \quad n \quad\hbox{ is even } \end{matrix}\right. \]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-130ca3edb2be7ffa70f126da9ca790b2_l3.png)
Exercise 1
Show/Hide Solution.
Using laws of exponents, we have
![]()
Exercise 2
Show/Hide Solution.
Using laws of exponents, we have
![]()
Exercise 3
Show/Hide Solution.
Using laws of exponents, we have
![]()
=![]()
=![]()
= ![]()
Exercise 4
Show/Hide Solution.
Using laws of exponents, we have
![]()
=
=
=
= ![]()
Exercise 5
Show/Hide Solution.
Using laws of exponents, we have

Exercise 6
Show/Hide Solution.
Using laws of exponents, we have
![]()
.
.![]()
.
.
= ![]()