"

28 Domain of a Function

D_f is called the domain of f:   D_f =\{ x\in \mathbb{R} : \, \,  f(x)   \in  \mathbb{R}\}

 

Example.   If  P(x)  and  Q(x)  are polynomials, then

\qquad\bullet\quad  f(x) = P(x)  \quad \Longrightarrow \quad  D_f = \mathbb{R}

\qquad\bullet\quad f(x) = \displaystyle{\frac{P(x)}{Q(x)} } \quad \Longrightarrow \quad  D_f =\{ x\in \mathbb{R} : \, \,  Q(x) \neq 0  \}

\qquad\bullet\quad  f(x) = \sqrt{P(x) } \quad \Longrightarrow \quad  D_f = \{ x\in \mathbb{R} : \, \,  P(x) \geqslant 0  \}

 

Watch a Video


View on YouTube

 

Show Examples

 

 

Exercise 1

Show/Hide Solution.

We have f(x) = \displaystyle{\frac{ 1 }{ 3 -\sqrt{x+1}}}

\displaystyle{D_f= \{ x \in \mathbb{R} : \qquad x+1\geqslant 0\quad\hbox{ and } \quad 3 -\sqrt{x+1}\neq 0\}= [-1, 8)\cup (8 , + \infty) }

since we have

    \[ 3 -\sqrt{x+1}= 0 \quad \Longleftrightarrow \quad 9= x+ 1 \quad \hbox{ with } \quad x+1\geqslant 0\]

    \[ \quad \Longleftrightarrow \quad x=8 \quad \hbox{ with } \quad x\geqslant -1 \]

    \[ \quad\Longleftrightarrow \quad x=8 .\]

 

Exercise 2

Show/Hide Solution.

We have

    \[ D_f= \{ x \in \mathbb{R} : \quad 2-\cos x\neq 0 \}= \mathbb{R} \]

since

    \[-1 \leqslant \cos x \leqslant 1 \quad \Longleftrightarrow \quad -1 \leqslant -\cos x \leqslant 1 \]

    \[ \quad \Longleftrightarrow \quad 1 \leqslant 2 -\cos x \leqslant 3 \]

    \[ \quad \Longrightarrow \quad 2-\cos x\neq 0 \quad \forall x\in \mathbb{R} .\]

 

Exercise 3

Show/Hide Solution.

We have f(x) = \displaystyle{\sqrt{\frac{x- 3x^2}{x+1}}}

\displaystyle{D_f= \{ x \in \mathbb{R} : \quad \frac{x- 3x^2}{x+1}\geqslant 0\quad\hbox{ and } \quad x+1\neq 0\}= (- \infty, -1)\cup [0 , 1/3] }

since we have

    \[\begin{array}{|c|ccccccccc|}\hline x & -\infty & \hskip 1cm & -1 & \hskip 1cm & 0 & \hskip 1cm & 1/3 & \hskip 1cm & +\infty \\ \hline x(1-3x)& & - & & - & & + & & - & \\ \hline x+1 & & - & & + & & + & & + & \\ \hline \displaystyle{\frac{x- 3x^2}{x+1}} & & + & & - & & + & & - & \\ \hline \end{array}\]

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.