"

27 Definition

A function f is a rule that assigns to each element x in a set D_f  exactly one element f(x) \in R_f.

D_f is called the domain of f:   D_f =\{ x\in \mathbb{R} : \, \,  f(x)   \in  \mathbb{R}\}

R_f is called the range of fR_f= \{ f(x)\in \mathbb{R} : \, \,  x  \in D_f\}

 

Watch a Video


View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

We have

f( {5}) = {2} | {5} - {5}|= 0

f( {-2}) = {2} | {-2} - {5}|= 2\times 7 = {14}

f( \frac{1}{{2}}) = {2} |\frac{1}{{2}} - {5}| = {2} |\frac{1 - ({2})({5})}{{2}}| = {2} |\frac{-9}{{2}}|= {9}

f( x+1) = {2} | x+1 - {5}| = {2} | x - {4}|

f( x^2+1) = {2} | x^2+1 - {5}| = {2} | x^2 - {4}|.

 

Exercise 2

 

Show/Hide Solution.

We have

f( {-4}) ={6} ({-4}) = {-24}

f( 0) = x+1\Big|_{x=0} = 1

f({3}) = x+1\Big|_{x={3}} = {4}

f({4} ) = x+1\Big|_{x=4} = {4} + 1= {5}

f( {8}) =( x- {4})^2\Big|_{x={8}} = ({8} - {4})^2= {16}.

 

Exercise 3

 

Show/Hide Solution.

We have

\displaystyle{f( {3}) = \frac{ {6} - {7} ({3})}{{6} + {7} ({3})}= {-15}/{27} }

\displaystyle{f(\frac{6}{{7}}) = \frac{ {6} - {7} (\frac{6}{{7}})}{{6} + {7} (\frac{6}{{7}})}= 0 }

\displaystyle{f(\frac{6}{{14}}) = \frac{ {6} - {7} (\frac{6}{{14}})}{{6} + {7} (\frac{6}{{14}})}= \frac{ {6} - (\frac{6}{2})}{{6} + (\frac{6}{2})} = \frac{(\frac{6}{2}) }{3(\frac{6}{2})} = \frac{1}{3} }

\displaystyle{ f((\frac{6}{{7}})x) = \frac{ {6} - {7} (\frac{6}{{7}})(x)}{{6} + {7} (\frac{6}{{7}}(x))}= \frac{ {6} - {6} (x)}{{6} + {6} (x)} = \frac{1-x}{1+x} }

\displaystyle{f(\frac{6}{{7}}(a^2+1)) = \frac{ {6} - {7} (\frac{6}{{7}})(a^2+1)}{{6} + {7} (\frac{6}{{7}}(a^2+1))}= \frac{ {6} - {6} (a^2+1)}{{6} + {6} (a^2+1)} = -\frac{a^2}{2+a^2}}.

 

Exercise 4

 

Show/Hide Solution.

We have

\displaystyle{ x^2 + (y - {2})^2= {5} \quad \Longleftrightarrow\quad (y - {2})^2= {5} - x^2 }

In particular, choosing \displaystyle{x= \sqrt{\frac{{5} }{2 } }}, we obtain (y - {2})^2= \frac{{5}}{2} .

Thus, we assign to x two distinct images y= {2} \pm \sqrt{\frac{ {5} }{2} }.

Therefore, y cannot be a function of x.

 

Exercise 5

 

Show/Hide Solution.

We have,

\displaystyle{ {3} x - {9}|y|= 0 \quad \Longleftrightarrow\quad |y|= \frac{{3}}{{9}} x }

In particular, choosing \displaystyle{x= \frac{{9}}{{3} } }, we obtain |y|=1 .

Thus, we assign two distinct images y= \pm 1.

Therefore, y cannot be a function of x.

 

Exercise 6

 

Show/Hide Solution.

We have

\displaystyle{ x^2 + {2} y= {8} \quad \Longleftrightarrow\quad y= \frac{{8}-x^2}{{2}} }

So, for each x\in \mathbb{R}, we assign a unique image y.

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.