"

18 Quadratic Equations

The equation  a x^2 + bx + c = 0,   with     a\not= 0,  is called  a  quadratic equation.

The discriminant of this  equation  is given by  \Delta = b^2 -  4 a c .

The equation has:

         –   one solution if    \Delta =0 , given by  :      \displaystyle{ x= \frac{-b}{2a}  }

         –    two solutions  if    \Delta >0 , given by:

    \[ \displaystyle{ x= \frac{-b +   \sqrt{\Delta} }{2a}}\qquad \qquad\hbox{ and } \qquad\qquad \displaystyle{ x= \frac{-b -  \sqrt{\Delta} }{2a}}  \]

         –    no solution if   \Delta < 0.

 

Watch a Video

View on YouTube


 

How to complete a square?

\displaystyle{ a x^2 + bx + c\quad = \quad a \Big( x^2 + \frac{b}{a} x \Big) + c \quad =\quad a \Big( x^2 +2 \frac{b}{2a} x +\big(\frac{b}{2a} \big)^2 - \big(\frac{b}{2a} \big)^2 \Big) +c }

 

\displaystyle{ \qquad \qquad\qquad = \quad a\Big( \big[ x + \frac{b}{2a} \big]^2  - (\frac{b}{2a} )^2 \Big)  +c   \quad = \quad  a  \big[ x + \frac{b}{2a} \big]^2    -  a (\frac{b}{2a} )^2 + c }

 

\displaystyle{ \qquad \qquad \qquad  = \quad a \big[ x + \frac{b}{2a} \big]^2    - \frac{b^2 - 4 ac }{4a} \quad = \quad a \Big( \big[ x + \frac{b}{2a} \big]^2 - \frac{b^2 - 4 ac }{4a^2} \Big) }

 

Watch a Video

View on YouTube

 

 

Show Examples

 

Exercise 1

 

Exercise 2

 

Show/Hide Solution.

The discriminant of the quadratic equation {-6} x^2 + x + ({5})=0, is given by

\Delta = (1)^2 - 4\Big( {-6}\Big) \Big(({5})\Big) = {121}.

The equation has two distinct solutions, given by :

\displaystyle{ x= \frac{ -1 + \sqrt{ {121}} }{ {-12} } } =\frac{ 10 }{ -12 } =-\frac{ 5 }{6 } } \qquad \quad    and    \quad \qquad\displaystyle{ x= \frac{-1 - \sqrt{{121}} }{{-12} } = 1.}

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.