"

9 Factoring

Some factoring forms

    \begin{eqnarray*}&& a^2 - b^2 = (a+ b) (a-b) \\ \\&& a^2 + 2 a b + b^2 = (a+b)^2 \\ \\ && a^2 - 2 a b + b^2 = (a-b)^2 \\ \\ && a^3 + b^3 = (a+b) (a^2 - ab + b^2)\\ \\ && a^3 - b^3 = (a-b) (a^2 + ab + b^2) \end{eqnarray*}

How to factor a polynomial?

  • remove a common factor
  • factor by grouping
  • use special factoring forms.

 

Watch a Video

 

View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

5(x^2+ 4)^4 (2x) (x-2)^4 + (x^2+ 4)^5 (4) (x-2)^3

= (x^2+ 4)^4 (x-2)^3 \Big[ 5(2x) (x-2) + (x^2+4) (4)\Big]

= (x^2+ 4)^4 (x-2)^3 \Big[ 14x^2 -20 x +16\Big].

 

Exercise 2

 

Show/Hide Solution.

Set t= x^2 + 1. We have

(x^2 +1)^2 - 7 (x^2 + 1) + 10 = t^2 - 7 t +10 = ( t - 2) (t-5)

= [ x^2 + 1- 2] [ x^2 +1 - 5 ] = (x^2 - 1) (x^2 -4)

= (x- 1) (x+1)( x - 2)(x+2)

We used the identity : a^2 - b^2 = (a-b) (a+b).

 

Exercise 3

 

Show/Hide Solution.

We factor the expression by regrouping terms.

x^5 + x^4 + x + 1= x^4( x+ 1) + x + 1 = (x+1) ( x^4 + 1 )

x^9 + x^8 + 2x^5 + 2x^4 + x + 1
= x^8( x+ 1) + 2x^4( x+ 1) + x + 1
=(x+1) (x^8 +2 x^4 + 1 )
=(x+1) ( x^4 + 1 )^2

Thus the common factor is: (x+1) ( x^4 + 1 )^2 .

 

Exercise 4

 

Show/Hide Solution.

We apply the identity: a^3 + b^3 = (a + b) (a^2 - a b + b^2 ).

x^3 +{27} = x^3 +(3)^3 = (x+{3}) (x^2 - {3} x + {3}^2 ).

 

Exercise 5

 

Show/Hide Solution.

We use the method of completing the square. We have

16 z^2 - 24 z + 9 = (4z)^2 - 2 (4 z) (3) + (3)^2 = (4z-3)^2

We used the identity : a^2 -2 a b + b^2 = (a-b)^2.

For 8 z^2 + 2 z - 6, we can use the same method or the method of determinant.

We have \Delta = (2)^2- 4(8)(-6)= 4. (49) and the roots are

z_1= (-2-14)/16 =-1, \qquad \qquad z_2 = (-2+14)/16=3/4

Thus 8 z^2 + 2 z - 6 = 8(z+1) (z-3/4)= 2(z+1)(4z-3).

Hence, the common factor is : (4z-3).

 

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.