"

1 What is Environmental Science and Sustainability

Image 1. Planet Earth. Earth is the only place in the universe that is definitely known to sustain life and ecosystems. Other than sunlight, the natural resources needed to sustain the human economy are restricted to the limited amounts that can be extracted on Earth. Source: R. Stöckli, N. El Saleous, and M. Jentoft-Nilsen, NASA GSFC; http://earthobservatory.nasa.gov/IOTD/view.php?id=885

Watch the Earthrise from Apollo 11


After reading this chapter, you should be able to:

  • Define environmental science and studies.
  • Identify some key themes that can help you make sense of and analyze environmental issues.
  • Describe how environmental stressors and disturbances can affect species and ecosystems.
  • Describe five important world views.
  • Discuss the environmental effects of humans as a function of population, affluence, and technology.
  • Understand the idea of sustainable development.
What is Environmental Science & Environmental Studies?

Environmental science & studies examines the scientific, social, and cultural aspects of environmental issues. Studying the environment requires us to think about ways to identify, understand, and find solutions to environmental problems, which is complex and requires an interdisciplinary approach. Despite this complexity, environmental issues can be studied in three broad categories:

  1. how human activities impact the environment;
  2. the use and consumption of natural resources; and
  3. actions that can solve environmental problems.

The kinds of questions that might be examined in environmental science and/or studies include:

  1. How large might the human population be in Canada, or on Earth, in 50 or 200 years?
  2. How are human activities affecting the climate? How can we reduce greenhouse gas emissions?
  3. Can fossil fuels be replaced with renewable energy?
  4. How can we harvest renewable resources such as fish or forests in ways that don’t degrade them?
  5. Will Canada have enough water in the future? Is our water safe to drink and swim in?
  6. How do air pollution and climate change affect forests and other ecosystems? How can these impacts be prevented or repaired?
  7. Where and how quickly are species and natural habitats becoming endangered or extinct, and how can this be prevented?

Specialists examining these and other questions related to environmental issues may come from many specific areas of study, each of which is referred to as a discipline. However, the various ways of understanding each issue may be integrated into comprehensive studies of the subject matter – this is why environmental studies is referred to as interdisciplinary field. For environmental science, the most relevant of the disciplinary subjects are atmospheric science, biology, chemistry, computer science, ecology, geography, geology, mathematics, medical science, oceanography, physics, and statistics. This is illustrated in Figure 1.1, which suggests that all fields of scientific knowledge are relevant to understanding the causes, consequences, and resolution of environmental problems.

Figure 1.1. Environmental science is interdisciplinary. This figure shows disciplines that are relevant to identifying and solving environmental issues.

This book deals with and introduces the key subjects of environmental science and studies.

Ecology, geography, and chemistry are disciplines that are highly relevant to environmental science and studies. Ecology is the study of the relationships of organisms with their environment and is itself a highly interdisciplinary field of study – it mostly involves biology, but knowledge of chemistry, computer science, mathematics, physics, geology, and other fields is also important. Chemistry is another field that studies of how nutrients move within the natural systems of the Earth, and how contaminants impact humans and ecosystems.

We will also examine topics in the social sciences and humanities because they are also vital to understanding and resolving environmental issues. On the need for interdisciplinary approaches to environmental issues, Trent Professor Stephanie Rutherford has said, “Ethics needs ecology, policy needs literature, and sociology needs chemistry if we are to have any real chance of tackling issues like climate change.”

In ERSC 1010H, we will examine a range of environmental topics and issues. Often we will approach these issues from a particular disciplinary perspective – such as chemistry or ecology – but we want to encourage you to begin seeing connections across disciplines. To do this, we have suggested a set of cross-cutting themes for analyzing environmental issues.  Each of these themes give us a framework or lens for analyzing and understanding environmental issues and encourages an interdisciplinary perspective. You may encounter other ways to make sense of environmental issues in your studies and we encourage you to compare them with these seven themes. It’s important to think critically about your ideas and approach to studying the environment. No single way alone is correct.  Rather, a plurality of views and approaches is needed.

Image 1.1. Themes for analyzing environmental issues and topics.

Themes for ERSC 1010H

Let’s briefly examine these themes.

Science uses knowledge to better understand environmental issues, such as air or water chemistry, climate modelling, or the ecological effects of pollution. Several well-known Canadian environmental scientists include: Jim Bruce of the Meteorological Service of Canada who worked on acid rain and climate change; Tom Hutchinson of Trent University who helped to understand the ecological impacts of acid rain, Erica Nol of Trent University, who examines factors affecting bird conservation, and Kirsten Zickfeld of Simon Fraser University, who studies the causes and consequences of climate change.

Technology refers to the products and approaches that either create environmental problems and have the potential to solve them. We might think about cars with internal combustion engines as a sources of air pollution and greenhouse gases. Or electric cars as a potential solution to these problems. But bikes and roads are also technologies, and we need to consider their design and use in thinking about environmental issues.

Uncertainty, risk and complexity acknowledges that we often have to make decisions about environmental issues when we don’t have a full understanding of them. Uncertainty is an inherent aspect of science – scientists are very used to dealing with it in their work. But policy makers often need to make “yes” or “no” decisions – e.g., should a new regulation be created? Should a new pollution tax be implemented? In many ways, our experience with COVID in the spring and summer of 2020 illustrated the challenges of acting and making decisions under uncertainty. Many people argued for precaution, while others were willing to take greater risks. Different approaches arise in part because of the values that people bring to understanding environmental issues, and their willingness (or not) to accept different risks. It can be challenging to find collective agreement about what degree of risk is acceptable. Added to these challenges are the ways that some industry groups have used scientific uncertainty to undermine environmental action. Social science research has demonstrated how the fossil fuel industry has, over decades, purposively tried to create doubt in the public’s mind about climate change by unfairly exploiting scientific uncertainty. Creating doubt whether an issue is serious can encourage inaction.

Scale and jurisdiction points to the idea that environmental issues can be both global and local at the same time, and that they don’t neatly follow our political jurisdictions. My decision whether the drive my car or ride my bike will have a local impact on the environment, but it will also have a global impact in terms of greenhouse gases, now and in the future. And pollution doesn’t know about the boundary between countries or provinces. So countries and provinces need to work together to set goals, policies and regulation to prevent pollution, protect the environment, and conserve natural resources.

Politics is about influencing the decisions that we make as individuals, governments and organizations. Political decisions often involve different groups exerting their power – or trying to secure political power and influence – so that their interests are advanced. Different groups have different interests when it comes to environmental issues. And differences in power are tremendously important in considering and understanding how environmental impacts affect different groups in ways that are unjust and unfair.

Different people have different values and ideas about the environment, or even how the world works more generally. And these values are important in shaping how we understand environmental issues. Social scientists have showed how environmental values and ideas are enmeshed with other political values such as ideas of freedom, ideas about the role of government, ideas about globalization, ideas about capitalism and the role of markets, among others. In recent years, there has been a concerning trend of polarization about various social and political ideas in North America. Taking collective action on environmental issues is made more difficult if we can’t agree.

Governance considers the ways that we govern human activities that impact the environment. It includes the forums that we use to discuss environmental issues, the nature and role of environmental laws and regulations, the types of organizations and institutions that guide our actions, and the role of the market.

While they can overlap, it’s also helpful to distinguish between studying environmental issues, and advocating for change. Environmentalists take a strong public stance on a particular environmental issue, in terms of the need to address the problem. David Suzuki is perhaps the most famous environmentalist in Canada, because he has so effectively influenced the attitudes of people through books, television, and other media. But he was also early in his career, a research scientist. Elizabeth May is another well-known Canadian environmentalist, who has worked to deal with many issues as the director of the Sierra Club of Canada, and for the last 10 years as the head of the Green Party of Canada and a Member of Parliament. A local champion is Trent alumnus Tegan Moss, the executive director of  Peterborough GreenUp, an Peterborough-based environmental organization that works to improve community sustainability.

Canadian Focus 1.1. David Suzuki – A Canadian Environmentalist
David Suzuki was born in Vancouver in 1936. In 1964, he became a biology professor at the University of British Columbia, where he studied the genetics of fruit flies. Beginning in the mid-1970s, Suzuki became engaged in media ventures designed to popularize knowledge about scientific issues important to society, most notably through the Quirks and Quarks (radio) and Nature of Things (television) series of the Canadian Broadcasting Corporation.

Through these media efforts, as well as his many books, magazine and newspaper articles, and public lectures, Suzuki has been instrumental in informing a broad public in Canada and other countries about the gravity of environmental problems, including their scientific and socio-economic dimensions. This is not to say that everyone agrees with his interpretation of environmental issues. Such issues are always controversial, and there are people who believe that some environmental problems – even climate change and the effects of pesticides – are not important. But despite this disagreement, David Suzuki is a highly respected spokesperson on a wide range of environmental topics. His work is now being advanced through the activities of the David Suzuki Foundation, an advocacy and research organization founded in 1990 with the aim of enhancing progress toward an ecologically sustainable human economy (see http://www.davidsuzuki.org/). Suzuki has built a worldwide following of a broad constituency of people concerned about environmental damage and social equity. By doing this, he has contributed greatly to the identification and resolution of environmental problems in Canada and the world.

You can read more about David Suzuki here.

Environmental issues can feel overwhelming at times. But, it is important to tackle them in a hopeful way. Pessimism is a self-fulfilling prophesy. Our goal in this course is to identify problems and find practical ways to repair them and prevent others from occurring. There are many worthwhile and necessary actions that represent real progress towards an ecologically sustainable future. Each of us has a role in understanding and working to solve these!

Ecosystems

The word ecosystem is a generic term that is used to describe one or more communities of organisms that are interacting with their environment as a defined unit. As such, ecosystems can be organized in a hierarchy – they may range from small units occurring in discrete microhabitats (such as an aquatic ecosystem contained within a pitcher plant or in a garden surrounded by pavement) to much larger scales (such as a landscape or seascape). Even the biosphere can be viewed as being a single ecosystem.

Ecological interpretations of the natural world consider the web-like connections among the many components of ecosystems in a holistic manner. This ecosystem approach does not view the system as a random grouping of individuals, populations, species, communities, and environments. Rather, it confirms all of these as being intrinsically connected and mutually dependent, although in varying degrees, and also as having emergent properties (In Detail 1.1).

An important ecological principle is that all species are sustained by environmental resources: the goods and services that are provided by their ecosystem. All organisms require specific necessities of life, such as inorganic nutrients, food, and habitat with particular biological and physical qualities. Green plants, for example, need access to an adequate supply of moisture, inorganic nutrients (such as nitrate and phosphate), sunlight, and space. Animals require suitable foods of plant or animal biomass (organic matter), along with habitat requirements that differ for each species.

We need to understand that humans are no different in this respect from other species. Although this dependence may not always seem to be immediately apparent as we live our daily lives, we nevertheless depend on environmental resources such as food, energy, shelter, and water to sustain ourselves and our larger economies.

It follows that the development and growth of individual people, their populations, and their societies and cultures are limited to some degree by environmental factors. Examples of such constraints include excessively cold or dry climatic conditions, mountainous or otherwise inhospitable terrain, and other factors that influence food production by agriculture or hunting.

However, humans are often able to favourably manipulate their environmental circumstances. For example, crop productivity may be increased by irrigation, fertilizer, or by managing pests. In fact, humans are capable of overcoming their environmental constraints more than any other species.

The human species is labelled by the scientific term Homo sapiens, which is Latin for “wise being.”  When humans and their societies perceive an environmental constraint, such as a scarcity of resources, they often have been able to understand the limiting factors and to then use insight and tools to manipulate their environment accordingly. The solutions have generally involved management of the environment or other species to the benefit of humans, or the development of social systems and technologies that allow a more efficient exploitation of natural resources.

Humans are not the only species that cope with ecological constraints in clever ways. For example, the woodpecker finch of the Galapagos Islands uses cactus spines to pry its food of insects out of fissures in bark and rotting wood. Chimpanzees modify twigs and use them to extract termites, a favourite food, from termite mounds. Egyptian vultures pick up stones in their beak and drop them on ostrich eggs, breaking them and allowing access to the rich food inside.

Although other species have developed behavioural changes that allow more efficient exploitation of their environment, none have approached the number and variety of innovations developed by humans. Moreover, no other species has developed a cumulative expertise for exploiting such a broad range of resources. And no other species has managed to spread these adaptive capabilities as extensively as humans have, in an increasingly global culture. Unfortunately, humans also have developed an unparalleled ability to degrade resources and ecosystems and to cause the extinction of other species. The intense damage caused by humans and our economy is, of course, a major element of the subject matter of environmental science.

In Detail 1.1. Systems and Complexity
The concept of systems is important in the hierarchical organization of environmental science. For this purpose, a system may be defined as a group or combination of regularly interacting and interdependent elements that form a collective entity, but one that is more than the mere sum of its constituents. A system can be isolated for purposes of study. Systems occur in various spheres of life, including the following:

  • biosystems, which are represented by any of the levels of organization of life, ranging from biochemistry to the biosphere
  • ecosystems, which are biosystems that consist of ecological communities that interact with their environment as a defined unit
  • economic systems, or integrated activities that produce goods and services in an economy
  • socio-cultural systems, which consist of ways that specialized people, information, and technologies are organized to achieve some goal
  • and numerous others, including musical symphonies, physical art such as paintings, and for that matter, the words and data in this book

Note, however, that these various systems are not mutually exclusive. For example, an agroecosystem includes elements of biosystems, ecosystems, and socio-cultural systems.

Systems have collective properties, which are based on the summation of their parts. One such property might be the total number of organisms present in a defined area, which might be measured as the sum of all of the individual plants, animals, and microorganisms that are estimated to be present.

Systems also have emergent properties, which are revealed only when their components interact to develop functional attributes that do not exist at simpler, lower levels. For example, harmonies and melodies are emergent properties of music, as occurs when vocalists, a drummer, a bass and lead guitarist, and a keyboard player of a rock band all integrate their activities to perform a song. Emergent properties are complex and may be difficult to predict or manage.

Biological systems provide numerous examples of emergent properties. For example, certain kinds of fungi and algae join together as a life form known as a lichen, which is an intimate, mutually beneficial relationship (a mutualism). The biological properties of a lichen are different from those of the partner species (which cannot live apart in nature), and they are impossible to predict based only on knowledge of the alga and the fungus.

Similarly, assemblages of various species occurring in the same place and time (an ecological community) develop emergent properties based on such interactions as competition, disease, herbivory, and predation. This complexity makes it difficult to predict changes caused by the introduction of a new disease or predator to a community (including the harvesting of certain species by humans). Assemblages of communities over large areas, known as ecoscapes, also have emergent properties, as does the biosphere as a whole.

Emergent properties are extremely difficult to predict and often emerge as “surprises,” for example, occurring when ecosystems are stressed by some human influence. The interconnections within systems are particularly important: any effects on particular components will inevitably affect all of the others. This extreme complexity is one of the defining attributes of life and ecosystems, in contrast with physical (or non-biological) systems, which are less complex.

Systems analysis is the study of the characteristics of systems, including their components, the relationships among those elements, and their collective and emergent properties. Systems analysis is used to study commercial, industrial, and scientific operations, usually with the goal of improving their efficiency. It can also be applied to improve the management of ecosystems being exploited to provide goods and services for use by the human economy. Ecologists also use systems analysis to better understand the organization and working of natural ecosystems, regardless of any direct relationship to the harvesting of natural resources. A key result of many such analyses is that the complexity of the system often precludes accurate predictions.

To see a remarkable example of a musical system with emergent properties, have a look at the video, Stringfever Bolero at http://www.youtube.com/watch?v=H5MLNMgpywk

 

Ecological stressors and Responses

The development and productivity of organisms, populations, communities, and ecosystems are naturally constrained by environmental factors. These constraints can be viewed as being environmental stressors (or stressors). For example, an individual plant may be stressed by inadequate nutrition, perhaps because of infertile soil or competition with nearby plants for scarce resources. Less-than-optimal access to nutrients, water, or sunlight results in physiological stress, which causes the plant to be less productive than it is genetically capable of being. One result of this stress–response relationship is that the plant may develop relatively few seeds during its lifetime. Because reproductive (and evolutionary) success is related to the number of progeny an organism produces to carry on its genetic lineage, the realized success of this individual plant is less than its potential.

Similarly, the development and productivity of an animal (including any human) are constrained by the environmental conditions under which it lives. For instance, an individual may have to deal with stresses caused by food shortage or by difficult interactions with other animals through predation, parasitism, or competition for scarce resources.

The most benign (or least stressful) natural environments are characterized by conditions in which factors such as moisture, nutrients, and temperature are not unduly constraining, while disturbances associated with disease, wildfire, windstorm, or other cataclysms are rare. These kinds of relatively benevolent conditions allow the most complex and biodiverse ecosystems to develop, namely old-growth rainforest and coral reefs. Other environments, however, are characterized by conditions that are more stressful, which therefore limits their development to less complex ecosystems, such as prairie, tundra, or desert.

All ecosystems are dynamic, in the sense that they change profoundly, and quite naturally, over time. Many ecosystems are especially dynamic, in that they regularly experience large changes in their species, amounts of biomass, and rates of productivity and nutrient cycling. For example, ecosystems that occur in seasonal climates usually have a discrete growing season, which is followed by a dormant period when little or no growth occurs. To varying degrees, all of the natural ecosystems of Canada are seasonally dynamic: a warm growing season is followed by a cold dormant period when no plant productivity or growth occurs. Animals may survive the hard times of winter by migrating, hibernating, or feeding on plant biomass remaining from the previous growing season.

Ecosystems that have recently been affected by a disturbance (an episode of destruction) are particularly dynamic because they are undergoing a process of ecological recovery known as succession. Succession occurs in response to changes associated with natural disturbances such as a wildfire, windstorm, or insect or disease epidemic. These cataclysmic stressors kill many of the dominant organisms in an ecosystem, creating opportunities for relatively short-lived species, which may dominate the earlier years of the post-disturbance recovery. Succession also occurs after anthropogenic disturbances, such as a deliberately lit wildfire or a clear-cut of mature timber.

The dynamics of natural disturbances can be far-reaching, in some cases affecting extensive landscapes. For example, in most years, millions of hectares of the boreal forest of northern Canada are disturbed by wildfires. Similarly, great areas may be affected by sudden increases of spruce budworm, a moth that can kill most mature trees in fir–spruce forest, or by the mountain pine beetle, which kills pine trees. An even more extensive cataclysm ended about 12,000 years ago, when glaciation covered virtually all of Canada with enormous ice sheets up to several kilometres thick. However, disturbances can also be local in scale. For example, the death of a large tree within an otherwise intact forest creates a local zone of damage, referred to as a microdisturbance. This small-scale disturbance induces a local succession of vigorously growing plants that attempt to achieve individual success by occupying the newly available gap in the forest canopy.

Even highly stable ecosystems such as tropical rainforest and communities of deep regions of the oceans change inexorably over time. Although catastrophic disturbances may affect those stable ecosystems, they are rare under natural conditions. Nevertheless, as with all ecosystems, these stable types are influenced by pervasive changes in climate and by other long-term dynamics, such as evolution.

In fact, natural environmental and ecological changes have caused the extinction of almost all of the species that have ever lived on Earth since life began about 3.5 billion years ago. Many of the extinctions occurred because particular species could not cope with the stresses of changes in climate or in biological interactions such as competition, disease, or predation. However, many of the extinctions appear to have occurred synchronously (at about the same time) and were presumably caused by an unpredictable catastrophe, such as a meteorite colliding with the Earth.

Environmental stressors and disturbances have always been an important, natural context for life on Earth. So, too, have been the resulting ecological responses, including changes in species and the dynamics of their communities and ecosystems.

Image 1.2. Modern consumerism results in huge demands for material and energy resources to build and run homes and to manufacture and operate machines and other goods. In an environmental context, this is sometimes referred to as “affluenza”. Source: B. Freedman 

Human Activities create Environmental Stressors

These days, of course, ecosystems are influenced not just by natural environmental stressors. In many situations, anthropogenic – or human – influences have become the most important constraining influence on the productivity of species and on ecosystems more generally. These direct and indirect influences have intensified enormously in modern times.

Humans affect ecosystems in three direct ways: (a) by harvesting valuable biomass, such as trees and hunted animals; (b) by causing damage through pollution; and (c) by converting natural ecosystems to into land-uses for the purposes of agriculture, industry, or urbanization.

These actions also cause indirect effects. For example, the harvesting of trees alters the habitat conditions for the diversity of plants, animals, and microorganisms that require forested habitat, thereby affecting their populations. At the same time, timber harvesting indirectly changes functional properties of the landscape, such as erosion, productivity, and the quantity of water flowing in streams. Both the direct and indirect effects of humans on ecosystems are important.

Humans have always left “footprints” in nature – to some degree, they have always influenced the ecosystems of which they were a component. During most of the more than 100,000 years of evolution of modern Homo sapiens, that ecological footprint was relatively shallow. This was because the capability of humans for exploiting their environment was not much different from that of other similarly abundant, large animals. However, during the cultural evolution of humans, the ecological changes associated with our activities progressively intensified. This process of cultural evolution has been characterized by the discovery and use of increasingly more sophisticated methods, tools, and social organizations to secure resources by exploiting the environment and other species.

Certain innovations occurring during the cultural evolution of humans represented particularly large increases in capability. Because of their great influence on human success, these advances are referred to as “revolutions.” The following are examples of early technological revolutions:

  • the discovery of ways of making improved weapons for hunting animals;
  • domestication of the dog, which also greatly facilitated hunting;
  • domestication of fire, which provided warmth and allowed for cooked, more digestible foods;
  • ways of cultivating and domesticating plants and livestock, which resulted in huge increases in food availability; and
  • techniques for working raw metals into tools, which were much better than those made of wood, stone, or bone.

The rate of new discoveries has increased enormously over time. More recent technological revolutions include the following:

  • machines and energy to perform work previously done by humans or draught animals;
  • advances in the domestication and cultivation of plants and animals;
  • discoveries in medicine and sanitation; and
  • extraordinary strides in communication and information technologies

These and other revolutionary innovations all led to substantial increases in the ability of humans to exploit the resources of their environment and to achieve population growth. Unfortunately, enhanced exploitation has rarely been accompanied by the development of a compensating ethic that encourages conservation of the resources needed for survival. Even early hunting societies of more than about 10,000 years ago appear to have caused the extinction of species that were hunted too effectively.

The diverse effects of human activities on environmental quality are vital issues, and they will be examined in detail in later chapters. For now, we emphasize the message that intense environmental stress associated with diverse human activities has become the major factor causing ecological changes on Earth. Many of the changes are degrading the ability of the environment and ecosystems to sustain humans and their economies. Anthropogenic activities are also causing enormous damage to natural ecosystems, including to habitats needed to support most other species.

In fact, the environmental and ecological damage caused by humans has become so severe that an appropriate metaphor for the human enterprise may be that of a malignancy, or cancer. This is a sobering image. It is useful to dwell on it so that its meaning does not escape our understanding. Humans and their activities are endangering species and natural ecosystems on such a tremendous scale and rate that the integrity of Earth’s life-support systems is at risk.

From an ecological perspective, the pace and intensity of these changes is staggering. Moreover, the damage will become substantially worse before corrective actions are (hopefully) undertaken to reverse the damage and allow an ecologically sustainable human enterprise to become possible. From a pessimistic standpoint, however, it may prove to be beyond the capability of human societies to act effectively to fix the damage and to design and implement solutions for sustainability.

These are, of course, only opinions, albeit the informed views of many environmental specialists. Anticipating the future is always uncertain, and things may turn out to be less grim than is now commonly predicted. For example, we might be wrong about the availability of key resources needed to sustain future generations of humans. Still, the clear indications from recent patterns of change are that the environmental crisis is severe and that it will worsen in the foreseeable future.

But not all this damage is inevitable. There is sincere hope and expectation that human societies will yet make appropriate adjustments and will choose to pursue options that are more sustainable than many of those now being followed. In fact, no other outcome could be considered acceptable.

World Views, Values and ideas

The choice that people make can influence environmental quality in many ways – by affecting the availability of resources, causing pollution, and causing species and natural ecosystems to become endangered. Decisions influencing environmental quality are influenced by two types of considerations: knowledge and ethics.

People choose to interact with the environment in different ways. On one hand, knowledge provides guidance about the consequences of different choices, including damage that might be caused and actions that could be taken to avoid that effect. On the other hand, values and ethics provide guidance about which alternative actions should be favoured or even allowed to occur.

Environmental values can be divided into two broad classes: utilitarian and intrinsic.

  1. Utilitarian value (sometimes also known as instrumental value) is based on the known importance of something to the welfare of people (see also the discussion of the anthropocentric world view, below). Accordingly, components of the environment and ecosystems are considered important only if they are resources necessary to sustain humans—that is, if they bestow economic benefits, provide livelihoods, and contribute to the life-support system. In effect, people harvest materials from nature because they have utilitarian value. These necessities include water, timber, fish and animals hunted in wild places, and agricultural crops grown in managed ecosystems.

    Ecological values are somewhat broader utilitarian values—they are based on the needs of humans, but also on those of other species and natural ecosystems. Ecological values often take a longer-term view. Aesthetic values are also utilitarian but are based on an appreciation of beauty, but they are subjective and influenced by cultural perspectives. For instance, environmental aesthetics might value natural wilderness over human-dominated ecosystems, free-living whales over whale meat, and large standing trees over toilet paper. On the other hand, aesthetics that are heavily influenced by more anthropogenic considerations might result in the opposite preferences. Maintaining aesthetic values can provide substantial cultural, social, psychological, and economic benefits.

  2. Intrinsic value is based on the belief that components of the natural environment (such as species and natural ecosystems) have inherent value and a right to exist, regardless of any positive, negative, or neutral relationships with humans. Under this system, it would be wrong for people to treat other creatures cruelly, to take actions that cause natural entities to become endangered or extinct, or to fail to prevent such occurrences.

Ethics concerns the perception of right and wrong and the values and rules that should govern human conduct. Clearly, ethics of all kinds depend upon the values that people believe are important. Environmental ethics deal with the responsibilities of present humans to both future generations and other species to ensure that the world will continue to function in an ecologically healthy way, and to provide adequate resources and livelihoods (this is also a key aspect of sustainable development; see the last section of this chapter). The environmental values described above underlie this system of ethics. Applying environmental ethics often means analyzing and balancing standards that may conflict, because aesthetic, ecological, intrinsic, and utilitarian values rarely all coincide (see In Detail 1.2).

There is also tension between ethical considerations that are individualistic and those that are holistic. For example, animal-rights activists are concerned with issues involving the treatment of individual organisms. Ecologists, however, may be more concerned with holistic values, such as a population, species, or ecosystem. As such, an ecologist might advocate a cull of overabundant deer in a park in order to favour the survival of populations of endangered plants, whereas that action might be resisted by an animal-rights activist.

Values and ethics, in turn, support larger systems known as world views. A world view is a comprehensive philosophy of human life and the universe, and of the relationship between people and the natural world. World views include traditional religions, philosophies, and science, as well as other belief systems. In an environmental context, generally important world views are known as anthropocentric, biocentric, and ecocentric, while the frontier and sustainability world views are more related to the use of resources. The anthropocentric world view considers humans as being at the centre of moral consideration. People are viewed as being more worthy than any other species and as uniquely disconnected from the rest of nature. Therefore, the anthropocentric world view judges the importance and worthiness of everything, including other species and ecosystems, in terms of the implications for human welfare.

Image 1.3. According to the biocentric and ecocentric world views, all species have intrinsic value. This does not, however, mean that one species cannot exploit another. This image of a girl and her puppy was taken in Kimmirut, southern Baffin Island. Source: B. Freedman.

The biocentric world view focuses on living entities and considers all species (and individuals) as having intrinsic value. Humans are considered a unique and special species, but not as being more worthy than other species. As such, the biocentric world view rejects discrimination against other species, or speciesism (a term similar to racism or sexism).

The ecocentric world view considers the direct and indirect connections among species within ecosystems to be invaluable. It also includes consideration for non-living entities, such as rocks, soil, and water. It incorporates the biocentric world view but goes well beyond it by stressing the importance of interdependent ecological functions, such as productivity and nutrient cycling.

The frontier world view asserts that humans have a right to exploit nature by consuming natural resources in boundless quantities. This world view claims that people are superior and have a right to exploit nature. Moreover, the supply of resources to sustain humans is considered to be limitless, because new stocks can always be found, or substitutes discovered. The consumption of resources is considered to be good because it enables economies to grow. Nations and individuals should be allowed to consume resources aggressively, as long as no people are hurt in the process.

The sustainability world view acknowledges that humans must have access to vital resources, but the exploitation of those necessities should be governed by appropriate ecological, intrinsic, and aesthetic values. The sustainability world view can assume various forms. The spaceship world view is quite anthropocentric. It focuses only on sustaining resources needed by people, and it assumes that humans can exert a great degree of control over natural processes and can safely pilot “spaceship Earth.” In contrast, ecological sustainability is more ecocentric. It considers people within an ecological context and focuses on sustaining all components of Earth’s life-support system by preventing human actions that would degrade them. In an ecologically sustainable economy, natural goods and services should be utilized only in ways that do not compromise their future availability and do not endanger the survival of species or natural ecosystems.

The attitudes of people and their societies toward other species, natural ecosystems, and resources have enormous implications for environmental quality. Extraordinary damages have been legitimized by attitudes based on a belief in the inalienable right of humans to harvest whatever they desire from nature, without consideration of pollution, threats to species, or the availability of resources for future generations. Clearly, one of the keys to resolving the environmental crisis is to achieve a widespread adoption of ecocentric and ecological sustainability world views.

Environmental Issues 1.1. Old-Growth Forest: Values in Competition

Our values are greatly influenced by cultural attitudes. Because the attitudes of people vary considerably, proposals to exploit natural resources as economic commodities often give rise to intense controversy. This can be illustrated by the case of old-growth rainforest on Vancouver Island.

Old-growth forest in the coastal zone of British Columbia contains many ancient trees, some of which are hundreds of years old and of gigantic height and girth (see Chapter 23). The cathedral-like aesthetics of old-growth forest are inspiring to many people, providing a deeply natural, even spiritual experience. Elements of the culture of the First Nations of coastal British Columbia are based on values associated with old-growth forest. Whatever their culture, however, few people fail to be inspired by a walk through a tract of old-growth forest on Vancouver Island. Old-growth forest is also a special kind of natural ecosystem, different from other forests, and supporting species that cannot survive elsewhere. These ecological qualities give coastal old-growth forest an intrinsic value that is not replicated elsewhere in Canada. This ecosystem represents a distinct element of our natural heritage.

Old-growth forest is also an extremely valuable resource because it contains large trees that can be harvested and manufactured into lumber or paper. If utilized in this manner, old-growth forest can provide livelihoods for people and revenues for local, provincial, and national economies. Old-growth forest also supports other economic values, including deer that can be harvested by hunters, and salmon by fishers, as well as birds and wildflowers that entice ecotourists to visit these special habitats. Intact old-growth forest also provides other valuable services, such as flows of clean streamwater and assistance in the regulation of atmospheric concentrations of vital gases such as carbon dioxide and oxygen. At one time, old-growth forest was widespread on Vancouver Island, but it is now endangered both there and almost everywhere else in Canada. This has happened largely because old-growth forest has been extensively harvested and replaced by younger, second-growth stands. The secondary forest is harvested as soon as it becomes economically mature, which happens long before it can develop into an old-growth condition. The net result is a rapidly diminishing area of old-growth forest and endangerment of both the ecosystem and some of its dependent species.

Obviously, the different values concerning old-growth forest on Vancouver Island are in severe conflict. Industrial schemes to harvest old-growth trees for manufacturing into lumber or paper are incompatible with other proposals to protect this special ecosystem in parks and wilderness areas. The conflicting perceptions of values have resulted in emotional confrontations between loggers and preservationists, in some cases resulting in civil disobedience, arrests, and jail terms. Ultimately, these sorts of controversies can only be resolved by finding a balance among the utilitarian, ecological, aesthetic, and intrinsic values of old-growth forest, and by ensuring that all of these values are sustained.

 

The Environmental Crisis

The modern environmental crisis involves population growth, resource depletion, and environmental degradation.

  • Population

    In 2019, the human population numbered more than 7.8 billion, including over 37 million in Canada. At the global level, the human population has been increasing because of the excess of birth rates over death rates. Exponential population growth, and the poverty of so many people, underlies much of the environmental crisis. Directly or indirectly, large population increases result in extensive deforestation, expanding deserts, land degradation by erosion, shortages of water, change in regional and global climate, endangerment and extinction of species, and other great environmental problems. Considered together, these damages represent changes in the character of the biosphere that are as cataclysmic as major geological events, such as glaciation.

  • Resources

    There are two kinds of natural resources. A non-renewable resource has a finite quantity. As these resources are extracted from the environment, their stocks are inexorably diminished and so are available in increasingly smaller quantities for future generations. Non-renewable resources include metals and fossil fuels such as petroleum and coal. In contrast, a renewable resource can regenerate after harvesting, and if managed well, can provide a supply that is sustainable. However, to be renewable, the ability of the resource to regenerate cannot be compromised by excessive harvesting or inappropriate management practices. Examples of renewable resources include fresh water, the biomass of trees and agricultural plants and livestock, and hunted animals such as fish and deer. Ultimately, a sustainable economy must be supported by renewable resources. Too often, renewable resources are not used responsibly, which impairs their renewal and represents a type of mining.

  • Environmental degradation

    This subject area deals with anthropogenic pollution and disturbances and their effects on people, their economies, other species, and natural ecosystems. Pollution may be caused by gases emitted by power plants and vehicles, pesticides, or heated water discharged into lakes. Examples of disturbance include clear-cutting, fishing, and forest fires.

Environmental Impacts of Humans

In a general sense, the cumulative impact of humans on the biosphere is a function of two major factors: (1) the size of the population and (2) the per-capita (per-person) environmental impact. The human population varies greatly among and within countries, as does the per-capita impact, which depends on the kind and degree of economic development that has occurred.

Paul Ehrlich, an American ecologist, has expressed this simple relationship using an “impact formula,” as follows: I = P × A × T, where

  • I is the total environmental impact of a human population
  • P is the population size
  • A is an estimate of the per-capita affluence in terms of resource use
  • T is the degree of technological development of the economy, on a per-capita basis

Calculations based on this simple PAT formula show that affluent, technological societies have a much larger per-capita environmental impact than do poorer ones.

How does Canada’s impact on the environment compare with that of more populous countries, such as China and India? We can examine this question by looking at two simple indicators of the environmental impact of both individual people and national economies: (a) the size of the human population, (b) the use of energy and (c) gross domestic product (GDP, or the annual value of all goods and services produced by a country). The use of energy is a helpful environmental indicator because power is needed to carry out virtually all activities in a modern society, including driving vehicles, heating or cooling buildings, manufacturing industrial products, and running computers. GDP represents all of the economic activities in a country, each of which results in some degree of environmental impact.

One of the major influences on the environmental impact of any human population is the number of people (the population size). In this respect, Canada has a much smaller population (35.1 million in 2015) compared to China (1.3 billion), India (1.1 billion), or the United States (321 million) (Figure 1.3a).

However, on a per-person basis, people living in Canada or the U.S. have much larger environmental impacts than do those living in China or India, as indicated by both per-capita energy use (Figure 1.3c) and per-capita GDP (Figure 1.3e). This difference is an inevitable consequence of the prosperous nature of the lifestyle of North Americans and other wealthier people, which on a per-capita basis is achieved by consuming relatively large amounts of natural resources and energy, while generating a great deal of waste materials. Sometimes this environmental effect of a wealthier population is referred to as “affluenza”.

However, the per-capita environmental impact is only part of the environmental influence of a country, or of any human population. To determine the national effect, the per-capita value must be multiplied by the size of the population. When this is done for energy, China and the U.S. have by far the largest values, while Canada and India are much less (Figure 1.3b). Still, it is remarkable that the national energy use of Canada, with its relatively small population, is close to that of India and within an order of magnitude of China, which have enormously larger populations. The same pattern is true of national the GDPs of those countries.

These observations drive home the fact that the environmental impact of any human population is a function of both (a) the number of people and (b) the per-person environmental impact. Because of this context, relatively wealthy countries like Canada have much larger environmental impacts than might be predicted based only on the size of their population. On the other hand, the environmental impacts of poorer countries are smaller than might be predicted based on their population. We can conclude that the environmental crisis is due to both overpopulation and excessive resource consumption.

Figure 1.3. The relative environmental impacts of China, India, Canada, and the United States. The environmental impacts of countries, and of their individual citizens, can be compared using simple indicators, such as the use of energy and the gross domestic product. Canada’s relatively small population, compared with China and India, is somewhat offset by its higher per-capita GDP and use of energy. However, because the per-capita data for the U.S. and Canada are similar, relative population sizes are the key influence on the environmental impacts of these two countries. Sources of data: population data are for 2015 (U.S. Census Bureau, 2015); energy use (all commercial fuels) for 2013 (BP, 2013); GDP for 2013 (CIA, 2014).

Image 1.4. Places where people live, work, grow food, and harvest natural resources are affected by many kinds of anthropogenic stressors. These result in ecosystems that are not very natural in character, such as the pavement and grassy edges of this major highway in Toronto. Source: B. Freedman.

Sustainable Development

Sustainable development refers to development of an economic system that uses natural resources in ways that do not deplete them or otherwise compromise their availability to future generations. In this sense, the present human economy is clearly non-sustainable. The reason for this bold assertion is that the present economy achieves rapid economic growth through vigorous depletion of both non-renewable and renewable resources. Economic growth and development are different phenomena. Economic growth refers to increases in the size of an economy because of expansions of both population and per-capita resource use. This growth is typically achieved by increasing the consumption of natural resources, particularly non-renewable ones such as fossil fuels and metals. The rapid use results in an aggressive depletion of vital non-renewable resources, and even renewable ones. In Canada, for example, considerable economic growth is being achieved by the huge investments of capital needed to mine and process the great oil-sand resources of northern Alberta. In contrast, a comparable scale of investment in renewable energy initiatives, such as wind or solar power, or in energy conservation, would have contributed more so to sustainable development.

Almost all national economies have been growing rapidly in recent times. Moreover, most politicians, economic planners, and business people hope for additional growth of economic activity, in order to generate more wealth and to provide a better life for citizens. At the same time, however, most leaders of society have publicly affirmed their support of sustainable development. However, they are confusing sustainable development with “sustainable economic growth.” Unfortunately, continuous economic growth is not sustainable because there are well-known limits due to finite stocks of natural resources, as well as a limited ability of the biosphere to absorb wastes and ecological damage without suffering irreversible degradation. This limit is a fundamental principle of ecological economics.

Economic development is quite different from economic growth. Development implies a progressively improving efficiency in the use of materials and energy, a process that reflects socio-economic evolution toward a more sustainable economy. Within that context, so-called developed countries have a relatively well-organized economic infrastructure and a high average per-capita income (because of their latter characteristic, they may also be referred to as high-income countries). Examples include Canada, the United States, Japan, countries of western Europe, and Australia. In contrast, less-developed or low-income countries have much less economic infrastructure and low per-capita earnings. Examples include Afghanistan, Bolivia, Myanmar, and Zimbabwe. A third group is comprised of rapidly developing or middle-income countries, such as Brazil, Chile, China, India, Malaysia, Russia, and Thailand.

A sustainable economy must be fundamentally supported by the wise use of renewable resources, meaning they are not used more quickly than their rate of regeneration. For these reasons, the term sustainable development should refer only to progress being made toward a sustainable economic system. Progress in sustainable development involves the following sorts of desirable changes:

  • increasing efficiency of use of non-renewable resources, for example, by careful recycling of metals and by optimizing the use of energy
  • increasing use of renewable sources of energy and materials in the economy (to replace non-renewable sources)
  • improving social equity, with the ultimate goal of helping all people (and not just a privileged minority) to have reasonable access to the basic necessities and amenities of life

Despite lots of rhetoric, progress toward sustainability has been slow. This is because most actions undertaken by governments and businesses have supported economic growth, rather than sustainable development.

Sustainable development is a lofty and necessary goal for society to pursue. But if a sustainable human economy is not attained, then the non-sustainable one will run short of resources and could collapse. This would cause terrible misery for huge numbers of people and colossal damage to the biosphere.

The notion of sustainability can be further extended to that of ecologically sustainable development. This idea includes the usual aspect of sustainable development in which countries develop without depleting their essential base of natural resources, essentially by basing their economy on the wise use of renewable sources of energy and materials. Beyond that, however, an ecologically sustainable economy runs without causing an irretrievable loss of natural ecosystems or extinctions of species, while also maintaining important environmental services, such as the provision of clean air and water. Ecological sustainability is a reasonable extension of sustainability, which only focuses on the human economy. By expanding to embrace the interests of other species and natural ecosystems, ecological sustainability provides an inclusive vision for a truly harmonious enterprise of humans on planet Earth. Identifying and resolving the barriers to ecological sustainability are the fundamental objectives and subject matter of environmental studies. It provides a framework for all that we do.

Conclusions

Environmental science & studies is a highly interdisciplinary field that is concerned with issues associated with the rapidly increasing human population, the use and diminishing stocks of natural resources, damage caused by pollution and disturbance, and effects on biodiversity and the biosphere. These are important issues, but they involve complex and poorly understood systems. They also engage conflicts between direct human interests and those of other species and the natural world.

Ultimately, the design and implementation of an ecologically sustainable human economy will require a widespread adoption of new world views and cultural attitudes that are based on environmental and ecological ethics, which include consideration for the needs of future generations of people as well as other species and natural ecosystems. This will be the best way of dealing with the so-called “environmental crisis,” a modern phenomenon that is associated with rapid population growth, resource depletion, and environmental damage. This crisis is caused by the combined effects of population increase and an intensification of per-capita environmental damage.

Finally, it must be understood that that the study of environmental issues is not just about the dismal task of understanding awful problems. Rather, a major part of the subject is to find ways to repair many of the damages that have been caused, and to prevent others that might yet occur. These are helpful and hopeful actions, and they represent necessary progress toward an ecologically sustainable economy.

Questions for Review

  1. Define environmental science, environmental studies, and ecology. List the key disciplinary fields of knowledge that each includes.
  2. Describe the hierarchical structure of the universe and list the elements that encompass the realms of biology and ecology.
  3. Identify the key environmental stressors that may be affecting an ecosystem in your area (e.g., a local park). Make sure that you consider both natural and anthropogenic stressors.
  4. What is the difference between morals and knowledge, and how are these conditioned by personal and societal values?
  5. Explain how cultural attributes and expressions can affect the ways that people view the natural world and interact with environmental issues.

Questions for Discussion

  1. Describe how you are connected with ecosystems, both through the resources that you consume (food, energy, and materials) and through your recreational activities. Which of these connections could you do without?
  2. How are your personal ethical standards related to utilitarian, ecological, aesthetic, and intrinsic values? Think about your world view and discuss how it relates to the anthropocentric, biocentric, and ecocentric world views.
  3. According to information presented in this chapter, Canada might be regarded as being as overpopulated as India and China. Do you believe this is a reasonable conclusion? Justify your answer.
  4. Make a list of the most important cultural influences that have affected your own attitudes about the natural world and environmental issues.

Exploring Issues

  1. You have been asked by the United Nations to devise an index of national and per-capita environmental impacts that will be used to compare various developed and less-developed countries. Until now, the United Nations has used extremely simple indicators, such as energy use and gross domestic product, but they now want to use more realistic data. How would you design better indicators? What do you think would be the most important components of the indicators, and why?

References Cited and Further Reading

Armstrong, S.J. and R.G. Botzler. 2003. Environmental Ethics: Divergence and Convergence. McGraw-Hill, Columbus, OH.

Botkin, D. 1992. Discordant Harmonies. A New Ecology for the 21st Century. 2nd ed. Oxford University Press, New York.

Brown, L.R. 2003. Plan C: Rescuing a Planet Under Stress and a Civilization in Trouble. W.W. Norton and Company, New York.

British Petroleum (BP). 2013. Statistical Review of World Energy 2013. BP, London, UK. https://web.archive.org/web/20141023015532/http://large.stanford.edu/courses/2013/ph240/lim1/docs/bpreview.pdf

Callicott, J.B. 1988. In Defense of the Land Ethic: Essays in Environmental Philosophy. State University of New York Press, Albany, NY.

Central Intelligence Agency (CIA). 2014. The World Factbook. CIA, Langley, VA. https://web.archive.org/web/20140701051751/https://www.cia.gov/library/publications/the-world-factbook/rankorder/2001rank.html

DesJardins, J.R. 2000. Environmental Ethics: An Introduction to Environmental Philosophy. 3rd ed. Wadsworth, Belmont, CA.

Devall, B. and G. Sessions. 1985. Deep Ecology: Living as if Nature Mattered. Peregrine Smith Books, Salt Lake City, UT.

Ehrlich, P. and A.H. Ehrlich. 1991. The Population Explosion. Ballantine, New York, NY.

Evernden, L.L.N. 1985. The Natural Alien: Humankind and Environment. University of Toronto Press, Toronto, ON.

Evernden, L.L.N. 1992. The Social Creation of Nature. Johns Hopkins Press, Baltimore, MD.

Freedman, B. 1995. Environmental Ecology: The Ecological Effects of Pollution, Disturbance, and Other Stresses. Academic Press, San Diego, CA.

Hargrove, E.C. 1989. Foundations of Environmental Ethics. Prentice Hall, Englewood Cliffs, NJ.

Kuhn, T.S. 1996. The Structure of Scientific Revolutions. 3rd ed. University of Chicago Press, Chicago, IL.

Leopold, A. 1949. A Sand County Almanac. Oxford University Press, New York, NY.

Livingston, J.A. 1994. Rogue Primate: An Exploration of Human Domestication. Key Porter Books, Toronto, ON.

Miller, G.T. 2006. Living in the Environment. Brooks Cole, Pacific Grove, CA.

Nash, R.F. 1988. The Rights of Nature: A History of Environmental Ethics. University of Wisconsin Press, Madison, WI.

Regan, T. 1984. Earthbound: New Introductory Essays in Environmental Ethics. Random House, New York.

Rowe, J.S. 1990. Home Place: Essays on Ecology. NeWest Publishers, Edmonton, AB.

Schumacher, E.F. 1973. Small Is Beautiful. Harper & Row, New York, NY.

Singer, P. 2003. Ethics. Oxford University Press, Oxford, UK.

Singer, P. 2004. Animal Liberation. Ecco Press, New York, NY.

United States Census Bureau. 2015. International Programs. https://www.census.gov/data-tools/demo/idb/informationGateway.php

Wackernagle, M. and E.E. Rees. 1996. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, Gabriola Island, BC.

White, G.F. 1994. Reflections on changing perceptions on the Earth. Annual Review of Energy and Environment, 19: 1–15.

White, L. 1967. The Historical Roots of Our Ecologic Crisis. Science 155: 1203–07.

Wilson, E.O. 1984. Biophilia. Harvard University Press, Cambridge, MA.

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Environmental Science Copyright © 2018 by Dalhousie University is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.