Learning Objectives

By the end of this section, you will be able to:

  • Name the twelve cranial nerves and explain the functions associated with each
  • Describe the sensory and motor components of spinal nerves and the plexuses that they pass through

Spinal Nerves

The nerves connected to the spinal cord are the spinal nerves. The arrangement of these nerves is much more regular than that of the cranial nerves. All of the spinal nerves are combined sensory and motor axons that separate into two nerve roots. The sensory axons enter the spinal cord as the dorsal nerve root. The motor fibers, both somatic and autonomic, emerge as the ventral nerve root. The dorsal root ganglion for each nerve is an enlargement of the spinal nerve.

There are 31 spinal nerves, named for the level of the spinal cord at which each one emerges. There are eight pairs of cervical nerves designated C1 to C8, twelve thoracic nerves designated T1 to T12, five pairs of lumbar nerves designated L1 to L5, five pairs of sacral nerves designated S1 to S5, and one pair of coccygeal nerves. The nerves are numbered from the superior to inferior positions, and each emerges from the vertebral column through the intervertebral foramen at its level. The first nerve, C1, emerges between the first cervical vertebra and the occipital bone. The second nerve, C2, emerges between the first and second cervical vertebrae. The same occurs for C3 to C7, but C8 emerges between the seventh cervical vertebra and the first thoracic vertebra. For the thoracic and lumbar nerves, each one emerges between the vertebra that has the same designation and the next vertebra in the column. The sacral nerves emerge from the sacral foramina along the length of that unique vertebra.

Spinal nerves extend outward from the vertebral column to enervate the periphery. The nerves in the periphery are not straight continuations of the spinal nerves, but rather the reorganization of the axons in those nerves to follow different courses. Axons from different spinal nerves will come together into a systemic nerve. This occurs at four places along the length of the vertebral column, each identified as a nerve plexus, whereas the other spinal nerves directly correspond to nerves at their respective levels. In this instance, the word plexus is used to describe networks of nerve fibers with no associated cell bodies.

Of the four nerve plexuses, two are found at the cervical level, one at the lumbar level, and one at the sacral level (Figure 13.3.1). The cervical plexus is composed of axons from spinal nerves C1 through C5 and branches into nerves in the posterior neck and head, as well as the phrenic nerve, which connects to the diaphragm at the base of the thoracic cavity. The other plexus from the cervical level is the brachial plexus. Spinal nerves C4 through T1 reorganize through this plexus to give rise to the nerves of the arms, as the name brachial suggests. A large nerve from this plexus is the radial nerve from which the axillary nerve branches to go to the armpit region. The radial nerve continues through the arm and is paralleled by the ulnar nerve and the median nerve. The lumbar plexus arises from axons of the ventral rami of spinal nerves T12 through L4 and gives rise to nerves enervating the pelvic region and the anterior leg. The femoral nerve is one of the major nerves from this plexus, which gives rise to the saphenous nerve as a branch that extends through the anterior lower leg. The sacral plexus comes from the lower lumbar nerves L4 and L5 and the sacral nerves S1 to S4. The most significant systemic nerve to come from this plexus is the sciatic nerve, which is a combination of the tibial nerve and the fibular nerve. The sciatic nerve extends across the hip joint and is most commonly associated with the condition sciatica, which is the result of compression or irritation of the nerve or any of the spinal nerves giving rise to it.

These plexuses are described as arising from spinal nerves and giving rise to certain systemic nerves, but they contain fibers that serve sensory functions or fibers that serve motor functions. This means that some fibers extend from cutaneous or other peripheral sensory surfaces and send action potentials into the CNS. Those are axons of sensory neurons in the dorsal root ganglia that enter the spinal cord through the dorsal nerve root. Other fibers are the axons of motor neurons of the anterior horn of the spinal cord, which emerge in the ventral nerve root and send action potentials to cause skeletal muscles to contract in their target regions. For example, the radial nerve contains fibers of cutaneous sensation in the arm, as well as motor fibers that move muscles in the arm.

Spinal nerves of the thoracic region, T2 through T11, are not part of the plexuses but rather emerge and give rise to the intercostal nerves found between the ribs, which articulate with the vertebrae surrounding the spinal nerve.

This figure shows a torso of a human body. The spinal cord is shown in the body and the main nerves along the spinal cord are labeled.
Figure 13.3.1 – Nerve Plexuses of the Body: There are four main nerve plexuses in the human body. The cervical plexus supplies nerves to the posterior head and neck, as well as to the diaphragm. The brachial plexus supplies nerves to the arm. The lumbar plexus supplies nerves to the anterior leg. The sacral plexus supplies nerves to the posterior leg.

Cranial Nerves

The nerves attached to the brain are the cranial nerves, which are primarily responsible for the sensory and motor functions of the head and neck (one of these nerves targets organs in the thoracic and abdominal cavities as part of the parasympathetic nervous system). There are twelve cranial nerves, which are designated CNI through CNXII for “Cranial Nerve,” using Roman numerals for 1 through 12. They can be classified as sensory nerves, motor nerves, or a combination of both, meaning that the axons in these nerves originate out of sensory ganglia external to the cranium or motor nuclei within the brain stem. Sensory axons enter the brain to synapse in a nucleus. Motor axons connect to skeletal muscles of the head or neck. Three of the nerves are solely composed of sensory fibers; five are strictly motor; and the remaining four are mixed nerves.

Learning the cranial nerves is a tradition in anatomy courses, and students have always used mnemonic devices to remember the nerve names. A traditional mnemonic is the rhyming couplet, “On Old Olympus’ Towering Tops/A Finn And German Viewed Some Hops,” in which the initial letter of each word corresponds to the initial letter in the name of each nerve. The names of the nerves have changed over the years to reflect current usage and more accurate naming. An exercise to help learn this sort of information is to generate a mnemonic using words that have personal significance. The names of the cranial nerves are listed in Table 13.3 along with a brief description of their function, their source (sensory ganglion or motor nucleus), and their target (sensory nucleus or skeletal muscle). They are listed here with a brief explanation of each nerve (Figure 13.3.2).

The olfactory nerve and optic nerve are responsible for the sense of smell and vision, respectively. The oculomotor nerve is responsible for eye movements by controlling four of the extraocular muscles. It is also responsible for lifting the upper eyelid when the eyes point up, and for pupillary constriction. The trochlear nerve and the abducens nerve are both responsible for eye movement, but do so by controlling different extraocular muscles. The trigeminal nerve is responsible for cutaneous sensations of the face and controlling the muscles of mastication. The facial nerve is responsible for the muscles involved in facial expressions, as well as part of the sense of taste and the production of saliva. The vestibulocochlear nerve is responsible for the senses of hearing and balance. The glossopharyngeal nerve is responsible for controlling muscles in the oral cavity and upper throat, as well as part of the sense of taste and the production of saliva. The vagus nerve is responsible for contributing to homeostatic control of the organs of the thoracic and upper abdominal cavities. The spinal accessory nerve is responsible for controlling the muscles of the neck, along with cervical spinal nerves. The hypoglossal nerve is responsible for controlling the muscles of the lower throat and tongue.

This diagrams shows the brain and the main nerves in the brain are labeled.
Figure 13.3.2 – The Cranial Nerves: The anatomical arrangement of the roots of the cranial nerves observed from an inferior view of the brain.

Three of the cranial nerves also contain autonomic fibers, and a fourth is almost purely a component of the autonomic system. The oculomotor, facial, and glossopharyngeal nerves contain fibers that contact autonomic ganglia. The oculomotor fibers initiate pupillary constriction, whereas the facial and glossopharyngeal fibers both initiate salivation. The vagus nerve primarily targets autonomic ganglia in the thoracic and upper abdominal cavities.

External Website

QR Code representing a URL

Visit this site to read about a man who wakes with a headache and a loss of vision. His regular doctor sent him to an ophthalmologist to address the vision loss. The ophthalmologist recognizes a greater problem and immediately sends him to the emergency room. Once there, the patient undergoes a large battery of tests, but a definite cause cannot be found. A specialist recognizes the problem as meningitis, but the question is what caused it originally. How can that be cured? The loss of vision comes from swelling around the optic nerve, which probably presented as a bulge on the inside of the eye. Why is swelling related to meningitis going to push on the optic nerve?

Another important aspect of the cranial nerves that lends itself to a mnemonic is the functional role each nerve plays. The nerves fall into one of three basic groups. They are sensory, motor, or both (see Table 13.3). The sentence, “Some Say Marry Money But My Brother Says Brains Beauty Matter More,” corresponds to the basic function of each nerve. The first, second, and eighth nerves are purely sensory: the olfactory (CNI), optic (CNII), and vestibulocochlear (CNVIII) nerves. The three eye-movement nerves are all motor: the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI). The spinal accessory (CNXI) and hypoglossal (CNXII) nerves are also strictly motor. The remainder of the nerves contain both sensory and motor fibers. They are the trigeminal (CNV), facial (CNVII), glossopharyngeal (CNIX), and vagus (CNX) nerves. The nerves that convey both are often related to each other. The trigeminal and facial nerves both concern the face; one concerns the sensations and the other concerns the muscle movements. The facial and glossopharyngeal nerves are both responsible for conveying gustatory, or taste, sensations as well as controlling salivary glands. The vagus nerve is involved in visceral responses to taste, namely the gag reflex. This is not an exhaustive list of what these combination nerves do, but there is a thread of relation between them.

Cranial Nerves (Table 13.3)
Mnemonic # Name Function (S/M/B) Central connection (nuclei) Peripheral connection (ganglion or muscle)
On I Olfactory Smell (S) Olfactory bulb Olfactory epithelium
Old II Optic Vision (S) Hypothalamus/thalamus/midbrain Retina (retinal ganglion cells)
Olympus’ III Oculomotor Eye movements (M) Oculomotor nucleus Extraocular muscles (other 4), levator palpebrae superioris, ciliary ganglion (autonomic)
Towering IV Trochlear Eye movements (M) Trochlear nucleus Superior oblique muscle
Tops V Trigeminal Sensory/motor – face (B) Trigeminal nuclei in the midbrain, pons, and medulla Trigeminal
A VI Abducens Eye movements (M) Abducens nucleus Lateral rectus muscle
Finn VII Facial Motor – face, Taste (B) Facial nucleus, solitary nucleus, superior salivatory nucleus Facial muscles, Geniculate ganglion, Pterygopalatine ganglion (autonomic)
And VIII Auditory (Vestibulocochlear) Hearing/balance (S) Cochlear nucleus, Vestibular nucleus/cerebellum Spiral ganglion (hearing), Vestibular ganglion (balance)
German IX Glossopharyngeal Motor – throat Taste (B) Solitary nucleus, inferior salivatory nucleus, nucleus ambiguus Pharyngeal muscles, Geniculate ganglion, Otic ganglion (autonomic)
Viewed X Vagus Motor/sensory – viscera (autonomic) (B) Medulla Terminal ganglia serving thoracic and upper abdominal organs (heart and small intestines)
Some XI Spinal Accessory Motor – head and neck (M) Spinal accessory nucleus Neck muscles
Hops XII Hypoglossal Motor – lower throat (M) Hypoglossal nucleus Muscles of the larynx and lower pharynx

Chapter Review

Nerves are classified as cranial nerves or spinal nerves on the basis of their connection to the brain or spinal cord, respectively. The twelve cranial nerves can be strictly sensory in function, strictly motor in function, or a combination of the two functions. Sensory fibers are axons of sensory ganglia that carry sensory information into the brain and target sensory nuclei. Motor fibers are axons of motor neurons in motor nuclei of the brain stem and target skeletal muscles of the head and neck. Spinal nerves are all mixed nerves with both sensory and motor fibers. Spinal nerves emerge from the spinal cord and reorganize through plexuses, which then give rise to systemic nerves. Thoracic spinal nerves are not part of any plexus, but give rise to the intercostal nerves directly.

Review Questions

Glossary

brachial plexus
nerve plexus associated with the lower cervical spinal nerves and first thoracic spinal nerve
extraocular muscles
six skeletal muscles that control eye movement within the orbit
facial nerve
seventh cranial nerve; responsible for contraction of the facial muscles and for part of the sense of taste, as well as causing saliva production
femoral nerve
systemic nerve of the anterior leg that arises from the lumbar plexus
glossopharyngeal nerve
ninth cranial nerve; responsible for contraction of muscles in the tongue and throat and for part of the sense of taste, as well as causing saliva production
hypoglossal nerve
twelfth cranial nerve; responsible for contraction of muscles of the tongue
intercostal nerve
systemic nerve in the thoracic cavity that is found between two ribs
lumbar plexus
nerve plexus associated with the lumbar spinal nerves
median nerve
systemic nerve of the arm, located between the ulnar and radial nerves
nerve plexus
network of nerves without neuronal cell bodies included
oculomotor nerve
first cranial nerve; responsible for the sense of smell
olfactory nerve
systemic nerve of the arm that arises from the brachial plexus
optic nerve
second cranial nerve; responsible for visual sensation
phrenic nerve
systemic nerve from the cervical plexus that innervates the diaphragm
radial nerve
systemic nerve of the arm, the distal component of which is located near the radial bone
sacral plexus
nerve plexus associated with the lower lumbar and sacral spinal nerves
saphenous nerve
systemic nerve of the lower anterior leg that is a branch from the femoral nerve
sciatic nerve
systemic nerve from the sacral plexus that is a combination of the tibial and fibular nerves and extends across the hip joint and gluteal region into the upper posterior leg
sciatica
painful condition resulting from inflammation or compression of the sciatic nerve or any of the spinal nerves that contribute to it
spinal accessory nerve
eleventh cranial nerve; responsible for contraction of neck muscles
systemic nerve
nerve in the periphery distal to a nerve plexus or spinal nerve
tibial nerve
systemic nerve of the posterior leg that begins as part of the sciatic nerve
trigeminal nerve
fifth cranial nerve; responsible for cutaneous sensation of the face and contraction of the muscles of mastication
trochlear nerve
fourth cranial nerve; responsible for contraction of one of the extraocular muscles
ulnar nerve
systemic nerve of the arm located close to the ulna, a bone of the forearm
vagus nerve
tenth cranial nerve; responsible for the autonomic control of organs in the thoracic and upper abdominal cavities
vestibulocochlear nerve
eighth cranial nerve; responsible for the sensations of hearing and balance

This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax, licensed under CC BY. This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted.

Images, from Anatomy & Physiology by OpenStax, are licensed under CC BY except where otherwise noted.

Access the original for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction.

License

Icon for the Creative Commons Attribution-ShareAlike 4.0 International License

Mohawk - PN Structure & Function of the Human Body Copyright © 2019 by Lindsay M. Biga, Staci Bronson, Sierra Dawson, Amy Harwell, Robin Hopkins, Joel Kaufmann, Mike LeMaster, Philip Matern, Katie Morrison-Graham, Kristen Oja, Devon Quick, Jon Runyeon, OSU OERU, and OpenStax is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book