3.4 Use a General Strategy to Solve Linear Equations
Learning Objectives
By the end of this section, you will be able to:
- Solve equations using a general strategy
- Classify equations
Try It
Before you get started, take this readiness quiz:
1) Simplify: [latex]−(a-4)[/latex]
2) Multiply: [latex]\frac{3}{2}(12x+20)[/latex].
3) Simplify: [latex]5-2(n+1)[/latex].
4) Multiply: [latex]3(7y+9)[/latex].
5) Multiply: [latex](2.5)(6.4)[/latex].
Solve Equations Using a General Strategy
Until now we have dealt with solving one specific form of a linear equation. It is time now to lay out one overall strategy that can be used to solve any linear equation. Some equations we solve will not require all these steps to solve, but many will.
Beginning by simplifying each side of the equation makes the remaining steps easier.
How to
The general strategy for solving linear equations.
- Simplify each side of the equation as much as possible.
Use the Distributive Property to remove any parentheses.
Combine like terms. - Collect all the variable terms on one side of the equation.
Use the Addition or Subtraction Property of Equality. - Collect all the constant terms on the other side of the equation.
Use the Addition or Subtraction Property of Equality. - Make the coefficient of the variable term to equal to 1.
Use the Multiplication or Division Property of Equality.
State the solution to the equation. - Check the solution.
Substitute the solution into the original equation to make sure the result is a true statement.
Example 1
Solve: [latex]-6(x+3)=24[/latex].
Solution
Step 1: Simplify each side of the equation as much as possible.
Use the Distributive Property.
[latex]\begin{align*} -6\left(x+3\right)&=24\\ -6x-18&=24 \end{align*}[/latex]
Notice that each side of the equation is simplified as much as possible.
Step 2: Collect all variable terms on one side of the equation.
Nothing to to – all [latex]x[/latex]‘s are on the left side.
Step 3: Collect constant terms on the other side of the equation.
To get constants only on the right, add 18 to each side.
[latex]\begin{align*}&\;&-6x-18{\color{red}{+}}{\color{red}{18}}&=24{\color{red}{+}}{\color{red}{18}}\\ &\text{Simplify.}\;&-6x&=42 \end{align*}[/latex]
Step 4: Make the coefficient of the variable term to equal 1.
[latex]\begin{align*} &\text{Divide each side by -6.}\;&\frac{-6x}{{\color{red}{-}}{\color{red}{6}}}&=\frac{42}{{\color{red}{-}}{\color{red}{6}}}\\ &\text{Simplify.}\;&x&=-7 \end{align*}[/latex]
Step 5: Check the solution.
Let [latex]x=-7[/latex]
[latex]\begin{eqnarray*}-6\left(x+3\right)=\;&24&\\-6\left({\color{red}{-}}{\color{red}{7}}+3\right)\overset?=\;&24&\\\text{Simplify.}-6\left(-4\right)\overset?=\;&24&\\\text{Multiply.}\;24=\;&24&\end{eqnarray*}[/latex]
Try It
6) Solve: [latex]5(x+3)=35[/latex].
Solution
[latex]x=4[/latex]
7) Solve: [latex]6(y-4)=-18[/latex].
Solution
[latex]y=1[/latex]
Example 2
Solve: [latex]-(y+9)=8[/latex].
Solution
Step 1: Simplify each side of the equation as much as possible by distributing.
[latex]-y-9=8[/latex]
Step 2: The only y term is on the left side, so all variable terms are on the left side of the equation.
Step 3: Add 9 to both sides to get all constant terms on the right side of the equation.
[latex]\begin{align*}&\;&-y-9{\color{red}{+}}{\color{red}{9}}&=8{\color{red}{+}}{\color{red}{9}}\\ &\text{Simplify.}\;&-y&=17 \end{align*}[/latex]
Step 4: Rewrite [latex]-y[/latex] as [latex]-1y[/latex].
[latex]-1y=17[/latex]
Step 5: Make the coefficient of the variable term to equal to 1 by dividing both sides by -1.
[latex]\begin{align*}&\;&\frac{-1y}{-1}&=\frac{17}{-1}\\ &\text{Simplify.}\;&y&=-17 \end{align*}[/latex]
Step 6: Check:
[latex]-(y+9)=8[/latex]
Step 7: Let [latex]y=-17[/latex].
[latex]\begin{align*} -\left({\color{red}{-}}{\color{red}{17}}+9\right)&\overset?=8\\ -\left(-8\right)&\overset?=8\\ 8&=8\checkmark \end{align*}[/latex]
Try It
8) Solve: [latex]−(y+8)=-2[/latex].
Solution
[latex]y=-6[/latex]
9) Solve: [latex]-(z+4)=-12[/latex]
Solution
[latex]z=8[/latex]
Example 3
Solve: [latex]5(a-3)+5=-10[/latex].
Solution
Step 1: Simplify each side of the equation as much as possible.
[latex]\begin{align*} &\text{Distribute.}\;&5a-15+5&=-10\\ &\text{Combine like terms.}\;&5a-10&=-10 \end{align*}[/latex]
Step 2: The only [latex]a[/latex] term is on the left side, so all variable terms are on one side of the equation.
Step 3: Add 10 to both sides to get all constant terms on the other side of the equation.
[latex]\begin{align*} &\;&5a-10{\color{red}{+}}{\color{red}{10}}&=-10{\color{red}{+}}{\color{red}{10}}\\ &\text{Simplify.}\;&5a&=0\\ \end{align*}[/latex]
Step 4: Make the coefficient of the variable term to equal to 1 by dividing both sides by 5.
[latex]\begin{align*} &\;&\frac{5a}{\color{red}{5}}&=\frac0{\color{red}{5}}\\ &\text{Simplify.}\;&a&=0\\ \end{align*}[/latex]
Step 5: Check:
[latex]5(a-3)+5=-10[/latex]
Step 6: Let [latex]a=0[/latex].
[latex]\begin{align*} 5\left({\color{red}{0}}-3\right)+5&\overset?=-10\\ 5\left(-3\right)+5&\overset?=-10\\ -15+5&\overset?=-10\\ -10&=-10\checkmark \end{align*}[/latex]
Try It
10) Solve: [latex]2(m-4)+3=-1[/latex].
Solution
[latex]m=2[/latex]
11) Solve: [latex]7(n-3)-8=-15[/latex].
Solution
[latex]n=2[/latex]
Example 4
Solve: [latex]\frac{2}{3}(6m-3)=8-m[/latex].
Solution
Step 1: Distribute.
[latex]4m-2=8-m[/latex]
Step 2: Add [latex]m[/latex] to get the variables only to the left.
[latex]\begin{align*} &\;&4m{\color{red}{+}}{\color{red}{m}}-2&=8-m{\color{red}{+}}{\color{red}{m}}\\ &\text{Simplify.}\;&5m-2&=8\\ \end{align*}[/latex]
Step 3: Add 2 to get constants only on the right.
[latex]\begin{align*} &\;&5m-2{\color{red}{+}}{\color{red}{2}}&=8{\color{red}{+}}{\color{red}{2}}\\ &\text{Simplify.}\;&5m&=10\\ \end{align*}[/latex]
Step 4: Divide by 5.
[latex]\begin{align*} &\;&\frac{5m}{\color{red}{5}}&=\frac{10}{\color{red}{5}}\\ &\text{Simplify.}\;&m&=2\\ \end{align*}[/latex]
Step 5: Check:
[latex]\frac23(6m-3)=8-m[/latex]
Step 6: Let [latex]m=2[/latex].
[latex]\begin{align*} \frac23\left(6\cdot{\color{red}{2}}\cdot-3\right)&\overset?=8-{\color{red}{2}}\\ \frac23\left(12-3\right)&\overset?=6\\ \frac23\left(9\right)&\overset?=6\\ 6&=6\checkmark \end{align*}[/latex]
Try It
12) Solve: [latex]\frac{1}{3}(6u+3)=7-u[/latex].
Solution
[latex]u=2[/latex]
13) Solve: [latex]\frac{2}{3}(9x-12)=8+2x[/latex].
Solution
[latex]x=4[/latex]
Example 5
Solution
Step 1: Simplify—use the Distributive Property.
[latex]\begin{align*} &\;&8-6y-10&=0\\ &\text{Combine like terms.}\;&-6y-2&=0\\ \end{align*}[/latex]
Step 2: Add 2 to both sides to collect constants on the right.
[latex]\begin{align*} &\;&-6y-2{\color{red}{+}}{\color{red}{2}}&=0{\color{red}{+}}{\color{red}{2}}\\ &\text{Simplify.}\;&-6y&=2\\ \end{align*}[/latex]
Step 3: Divide both sides by [latex]-6[/latex].
[latex]\begin{align*} &\;&\frac{-6y}{{\color{red}{-}}{\color{red}{6}}}&=\frac2{{\color{red}{-}}{\color{red}{6}}}\\ &\text{Simplify.}\;&y&=-\frac13\\ \end{align*}[/latex]
Step 4: Check:
Let [latex]y=-\frac{1}{3}[/latex]
[latex]\begin{align*} 8-2\left(3y+5\right)&=0\\ 8-2\left[3\left({\color{red}{-}}{\color{red}{\frac13}}\right)+5\right]&=0\\ 8-2\left(-1+5\right)&\overset?=0\\ 8-2\left(4\right)&\overset?=0\\ 8-8&\overset?=0\\ 0&=0\checkmark \end{align*}[/latex]
Try It
14) Solve: [latex]12-3(4j+3)=-17[/latex]
Solution
[latex]j=\frac{5}{3}[/latex]
15) Solve: [latex]-6-8(k-2)=-10[/latex].
Solution
[latex]k=\frac{5}{2}[/latex]
Example 6
Solve: [latex]4(x-1)-2=5(2x+3)+6[/latex].
Solution
Step 1: Distribute.
[latex]\begin{align*} &\;&4x-4-2&=10x+15+6\\ &\text{Combine like terms.}\;&4x-6&=10x+21\\ \end{align*}[/latex]
Step 2: Subtract [latex]4x[/latex] to get the variables only on the right side since [latex]10>4[/latex].
[latex]\begin{align*} &\;&4x{\color{red}{-}}{\color{red}{4}}{\color{red}{x}}-6&=10{\color{red}{-}}{\color{red}{4}}{\color{red}{x}}+21\\ &\text{Simplify.}\;&-6&=6x+21\\ \end{align*}[/latex]
Step 3: Subtract 21 to get the constants on left.
[latex]\begin{align*} &\;&6{\color{red}{-}}{\color{red}{21}}&=6x+21{\color{red}{-}}{\color{red}{21}}\\ &\text{Simplify.}\;&-27&=6x\\ \end{align*}[/latex]
Step 4: Divide by 6.
[latex]\begin{align*} &\;&\frac{-27}{\color{red}{6}}&=\frac{6x}{\color{red}{6}}\\ &\text{Simplify.}\;&-\frac92&=x\\ \end{align*}[/latex]
Step 5: Check:
[latex]4(x-1)-2=5(2x+3)+6[/latex]
Step 6: Let [latex]x=-\frac{9}{2}[/latex].
[latex]\begin{align*} 4\left({\color{red}{-}}{\color{red}{\frac92}}\right)-2&\overset?=5\left[2\left({\color{red}{-}}{\color{red}{\frac92}}\right)+3\right]+6\\ 4\left(-\frac{11}2\right)-2&\overset?=5\left(-9+3\right)+6\\ -22-2&\overset?=5\left(-6\right)+6\\ -24&\overset?=-30+6\\ -24&=-24\checkmark \end{align*}[/latex]
Try It
16) Solve: [latex]6(p-3)-7=5(4p+3)-12[/latex].
Solution
[latex]p=-2[/latex]
17) Solve: [latex]8(q+1)-5=3(2q-4)-1[/latex].
Solution
[latex]q=-8[/latex]
Example 7
Solve: [latex]10[3-8(2s-5)]=15(40-5s)[/latex].
Solution
Step 1: Simplify from the innermost parentheses first.
[latex]10[3-16s+40]=15(40-5s)[/latex]
Step 2: Combine like terms in the brackets.
[latex]10[43-16s]=15(40-5s)[/latex]
Step 3: Distribute.
[latex]430-160s=600-75s[/latex]
Step 4: Add [latex]160s[/latex] to get the [latex]s[/latex]’s to the right.
[latex]\begin{align*} &\;&430-160{\color{red}{+}}{\color{red}{160}}{\color{red}{s}}&=600-85s{\color{red}{+}}{\color{red}{160}}{\color{red}{s}}\\ &\text{Simplify.}\;&430&=600+85s\\ \end{align*}[/latex]
Step 5: Subtract 600 to get the constants to the left.
[latex]\begin{align*} &\;&430-{\color{red}{600}}&=85s+600{\color{red}{-}}{\color{red}{600}}\\ &\text{Simplify.}\;&-170&=85s\\ \end{align*}[/latex]
Step 6: Divide.
[latex]\begin{align*} &\;&\frac{-170}{\color{red}{85}}&=\frac{85s}{\color{red}{85}}\\ &\text{Simplify.}\;&-2&=s\\ \end{align*}[/latex]
Step 7: Check:
[latex]10[3-8(2s-5)]=15(40-5s)[/latex]
Step 8: Substitute [latex]s=-2[/latex].
[latex]\begin{align*} 10\left[3-8\left(2{\color{black}{\left({\color{red}{-}}{\color{red}{2}}\right)}}-5\right)\right]&\overset?=15\left(40-5\left({\color{red}{-}}{\color{red}{2}}\right)\right)\\ 10\left[3-8\left(-4-5\right)\right]&\overset?=15\left(40+10\right)\\ 10\left[3-8\left(-9\right)\right]&\overset?=15\left(50\right)\\ 10\left[3+72\right]&\overset?=750\\ 10\left[75\right]&\overset?=750\\ 750&=750\checkmark \end{align*}[/latex]
Try It
18) Solve: [latex]6[4-2(7y-1)]=8(13-8y)[/latex].
Solution
[latex]y=-\frac{17}{5}[/latex]
19) Solve: [latex]12[1-5(4z-1)]=3(24+11z)[/latex].
Solution
[latex]z=0[/latex]
Example 8
Solve: [latex]0.36(100n+5)=0.6(30n+15)[/latex].
Solution
Step 1: Distribute.
[latex]36n+1.8=18n+9[/latex]
Step 2: Subtract [latex]18n[/latex] to get the variables to the left.
[latex]\begin{align*} &\;&36n{\color{red}{-}}{\color{red}{18}}{\color{red}{n}}+1.8&=18n{\color{red}{-}}{\color{red}{18}}{\color{red}{n}}+9\\ &\text{Simplify.}\;&18n+1.8&=9\\ \end{align*}[/latex]
Step 3: Subtract 1.8 to get the constants to the right.
[latex]\begin{align*} &\;&18n+1.8{\color{red}{-}}{\color{red}{1}}{\color{red}{.}}{\color{red}{8}}&=9{\color{red}{-}}{\color{red}{1}}{\color{red}{.}}{\color{red}{8}}\\ &\text{Simplify.}\;&18n&=7.2\\ \end{align*}[/latex]
Step 4: Divide.
[latex]\begin{align*} &\;&\frac{18n}{\color{red}{18}}&=\frac{7.2}{\color{red}{18}}\\ &\text{Simplify.}\;&n&=0.4\\ \end{align*}[/latex]
Step 5: Check:
[latex]0.35(100n+5)=0.6(30n+15)[/latex]
Step 6: Let [latex]n=0.4[/latex].
[latex]\begin{align*} 0.36\left(100\left({\color{red}{0}}{\color{red}{.}}{\color{red}{4}}\right)+5\right)&\overset?=0.6\left(30\left({\color{red}{0}}{\color{red}{.}}{\color{red}{4}}\right)+15\right)\\ 0.36\left(40+5\right)&\overset?=0.6\left(12+15\right)\\ 0.36\left(45\right)&\overset?=0.6\left(27\right)\\ 16.2&=16.2\checkmark \end{align*}[/latex]
Try It
20) Solve: [latex]0.55(100n+8)=0.6(85n+14)[/latex].
Solution
[latex]n=1[/latex]
21) Solve: [latex]0.15(40m-120)=0.5(60m+12)[/latex].
Solution
[latex]m=-1[/latex]
Classify Equations
Consider the equation we solved at the start of the last section, [latex]7x+8=-13[/latex]. The solution we found was [latex]x=-3[/latex]. This means the equation [latex]7x+8=-13[/latex] is true when we replace the variable, [latex]x[/latex], with the value [latex]-3[/latex]. We showed this when we checked the solution [latex]x=-3[/latex] and evaluated [latex]7x+8=-13[/latex] for [latex]x=-3[/latex].
[latex]\begin{align*} 7\left({\color{red}{-}}{\color{red}{3}}\right)+8&\overset?=-13\\ -21+8&\overset?=-13\\ -13&=-13\checkmark \end{align*}[/latex]
If we evaluate [latex]7x+8[/latex] for a different value of [latex]x[/latex], the left side will not be [latex]-13[/latex].
The equation [latex]7x+8=-13[/latex] is true when we replace the variable, [latex]x[/latex], with the value [latex]-3[/latex], but not true when we replace [latex]x[/latex] with any other value. Whether or not the equation [latex]7x+8=-13[/latex] is true depends on the value of the variable. Equations like this are called conditional equations.
All the equations we have solved so far are conditional equations.
Conditional equation
An equation that is true for one or more values of the variable and false for all other values of the variable is a conditional equation.
Now let’s consider the equation [latex]2y+6=2(y+3)[/latex]. Do you recognize that the left side and the right side are equivalent? Let’s see what happens when we solve for [latex]y[/latex].
[latex]\begin{alignat}{3} &\;&\;\;\;\;\;2y+6&=2(y+3)\\ &\text{Distribute}&\;\;\;\;\;-2y+6&=2y+6\\ &\text{Subtract}\;2y\;\text{to get the}\;y's\;\text{to one side.}&\;\;\;\;\;2y{\color{red}{-}}{\color{red}{2}}{\color{red}{y}}+6&=2{\color{red}{-}}{\color{red}{2}}{\color{red}{y}}+6\\ &\text{Simplify-the}\;y's\;\text{are gone!}&\;\;\;\;\;6&=6 \end{alignat}[/latex]
But [latex]6=6[/latex] is true.
This means that the equation [latex]2y+6=2(y+3)[/latex] is true for any value of [latex]y[/latex]. We say the solution to the equation is all of the real numbers. An equation that is true for any value of a variable like this is called an identity.
Identity
An equation that is true for any value of the variable is called an identity.
The solution of an identity is all real numbers.
What happens when we solve the equation [latex]5z=5z-1[/latex]?
[latex]\begin{alignat}{3} &\;&\;\;\;\;\;5z&=5z-1\\ &\text{Subtract}\;5z\;\text{to get the constant alone on the right.}&\;\;\;\;\;5z{\color{red}{-}}{\color{red}{5}}{\color{red}{z}}&=5z{\color{red}{-}}{\color{red}{5}}{\color{red}{z}}-1\\ &\text{Simplify-the}\;z's\;\text{are gone!}&\;\;\;\;\;0&\neq-1 \end{alignat}[/latex]
But [latex]0\neq{−1}[/latex]
Solving the equation [latex]5z=5z-1[/latex] led to the false statement [latex]0=-1[/latex]. The equation [latex]5z=5z-1[/latex] will not be true for any value of [latex]z[/latex]. It has no solution. An equation that has no solution, or that is false for all values of the variable, is called a contradiction.
Contradiction
An equation that is false for all values of the variable is called a contradiction.
A contradiction has no solution.
Example 9
Classify the equation as a conditional equation, an identity, or a contradiction. Then state the solution.
[latex]6(2n-1)+3=2n-8+5(2n+1)[/latex]
Solution
Step 1: Distribute.
[latex]\begin{align*} &\;&12n-6+3&=2n-8+10n+5\\ &\text{Combine like terms.}\;&12n-3&=12n-3\\ \end{align*}[/latex]
Step 2: Subtract [latex]12n[/latex] to get the [latex]n[/latex]’s to one side.
[latex]\begin{align*} &\;&12n{\color{red}{-}}{\color{red}{12}}{\color{red}{n}}-3&=12n{\color{red}{-}}{\color{red}{12}}{\color{red}{n}}-3\\ &\text{Simplify.}\;&-3&=-3\\ \end{align*}[/latex]
This is a true statement.
The equation is an identity.
The solution is all real numbers.
Try It
22) Classify the equation as a conditional equation, an identity, or a contradiction, and then state the solution:
[latex]4+9(3x-7)=-42x-13+23(3x-2)[/latex]
Solution
identity; all real numbers
23) Classify the equation as a conditional equation, an identity, or a contradiction and then state the solution:
[latex]8(1-3x)+15(2x+7)=2(x+50)+4(x+3)+1[/latex]
Solution
identity; all real numbers
Example 10
Classify as a conditional equation, an identity, or a contradiction. Then state the solution.
[latex]10+4(p-5)=0[/latex]
Solution
Step 1: Distribute.
[latex]\begin{align*} &\;&10+4p-20&=0\\ &\text{Combine like terms.}\;&4p-10&=0\\ \end{align*}[/latex]
Step 2: Add 10 to both sides.
[latex]\begin{align*} &\;&4p-10{\color{red}{+}}{\color{red}{10}}&=0{\color{red}{+}}{\color{red}{10}}\\ &\text{Simplify.}\;&4p&=10\\ \end{align*}[/latex]
Step 3: Divide.
[latex]\begin{align*} &\;&\frac{4p}{\color{red}{4}}&=\frac{10}{\color{red}{4}}\\ &\text{Simplify.}\;&p&=\frac52\\ \end{align*}[/latex]
The equation is true when [latex]p=\frac{5}{2}[/latex].
This is a conditional equation.
The solution is [latex]p=\frac{5}{2}[/latex].
Try It
24) Classify the equation as a conditional equation, an identity, or a contradiction and then state the solution: [latex]11(q+3)-5=19[/latex]
Solution
conditional equation; [latex]q=-\frac{9}{11}[/latex]
25) Classify the equation as a conditional equation, an identity, or a contradiction and then state the solution: [latex]6+14(k-8)=95[/latex]
Solution
conditional equation; [latex]k=\frac{201}{14}[/latex]
Example 11
Classify the equation as a conditional equation, an identity, or a contradiction. Then state the solution.
[latex]5m+3(9+3m)=2(7m-11)[/latex]
Solution
Step 1: Distribute.
[latex]\begin{align*} &\;&5m+27+9m&=14m-22\\ &\text{Combine like terms.}\;&14m+27&=14m-22\\ \end{align*}[/latex]
Step 2: Subtract [latex]14m[/latex] from both sides.
[latex]\begin{align*} &\;&14m+27{\color{red}{-}}{\color{red}{14}}{\color{red}{m}}&=14m-22{\color{red}{-}}{\color{red}{14}}{\color{red}{m}}\\ &\text{Simplify.}\;&27&\neq-22\\ \end{align*}[/latex]
But [latex]27\neq-22.[/latex]
The equation is a contradiction.
It has no solution.
Try It
26) Classify the equation as a conditional equation, an identity, or a contradiction and then state the solution:
[latex]10m+4(3-2m)=2(m-6)[/latex]
Solution
contradiction; no solution
27) Classify the equation as a conditional equation, an identity, or a contradiction and then state the solution:
[latex]4(7d+18)=13(3d-2)-11d[/latex]
Solution
contradiction; no solution
Type of equation | What happens when you solve it? | Solution |
---|---|---|
Conditional Equation | True for one or more values of the variables and false for all other values | One or more values |
Identity | True for any value of the variable | All real numbers |
Contradiction | False for all values of the variable | No solution |
Key Concepts
- General Strategy for Solving Linear Equations
- Simplify each side of the equation as much as possible.
Use the Distributive Property to remove any parentheses.
Combine like terms. - Collect all the variable terms on one side of the equation.
Use the Addition or Subtraction Property of Equality. - Collect all the constant terms on the other side of the equation.
Use the Addition or Subtraction Property of Equality. - Make the coefficient of the variable term to equal to 1.
Use the Multiplication or Division Property of Equality.
State the solution to the equation. - Check the solution.
Substitute the solution into the original equation.
- Simplify each side of the equation as much as possible.
Glossary
- conditional equation
- An equation that is true for one or more values of the variable and false for all other values of the variable is a conditional equation.
- contradiction
- An equation that is false for all values of the variable is called a contradiction. A contradiction has no solution.
- identity
- An equation that is true for any value of the variable is called an identity. The solution of an identity is all real numbers.
Exercises: Solve Equations Using the General Strategy for Solving Linear Equations
Instructions: For questions 1-59, solve each linear equation.
1. [latex]21(y-5)=-42[/latex]
Solution
[latex]y=3[/latex]
2. [latex]-9(2n+1)=36[/latex]
3. [latex]-16(3n+4)=32[/latex]
Solution
[latex]n=-2[/latex]
4. [latex]8(22+11r)=0[/latex]
5. [latex]5(8+6p)=0[/latex]
Solution
[latex]p=-\frac{4}{3}[/latex]
6. [latex]-(w-12)=30[/latex]
7. [latex]-(t-19)=28[/latex]
Solution
[latex]t=-9[/latex]
8. [latex]9(6a+8)+9=81[/latex]
9. [latex]8(9b-4)-12=100[/latex]
Solution
[latex]b=2[/latex]
10. [latex]32+3(z+4)=41[/latex]
11. [latex]21+2(m-4)=25[/latex]
Solution
[latex]m=6[/latex]
12. [latex]51+5(4-q)=56[/latex]
13. [latex]-6+6(5-k)=15[/latex]
Solution
[latex]k=\frac{3}{2}[/latex]
14. [latex]2(9s-6)-62=16[/latex]
15. [latex]8(6t-5)-35=-27[/latex]
Solution
[latex]t=1[/latex]
16. [latex]3(10-2x)+54=0[/latex]
17. [latex]-2(11-7x)+54=4[/latex]
Solution
[latex]x=-2[/latex]
18. [latex]\frac{2}{3}(9c-3)=22[/latex]
19. [latex]\frac{3}{5}(10x-5)=27[/latex]
Solution
[latex]x=5[/latex]
20. [latex]\frac{1}{5}(15c+10)=c+7[/latex]
21. [latex]\frac{1}{4}(20d+12)=d+7[/latex]
Solution
[latex]d=1[/latex]
22. [latex]18-(9r+7)=-16[/latex]
23. [latex]15-(3r+8)=28[/latex]
Solution
[latex]r=-7[/latex]
24. [latex]5-(n-1)=19[/latex]
25. [latex]-3-(m-1)=13[/latex]
Solution
[latex]m=-15[/latex]
26. [latex]11-4(y-8)=43[/latex]
27. [latex]18-2(y-3)=32[/latex]
Solution
[latex]y=-4[/latex]
28. [latex]24-8(3v+6)=0[/latex]
29. [latex]35-5(2w+8)=-10[/latex]
Solution
[latex]w=\frac{1}{2}[/latex]
30. [latex]4(a-12)=3(a+5)[/latex]
31. [latex]-2(a-6)=4(a-3)[/latex]
Solution
[latex]a=4[/latex]
32. [latex]2(5-u)=-3(2u+6)[/latex]
33. [latex]5(8-r)=-2(2r-16)[/latex]
Solution
[latex]r=8[/latex]
34. [latex]3(4n-1)-2=8n+3[/latex]
35. [latex]9(2m-3)-8=4m+7[/latex]
Solution
[latex]m=3[/latex]
36. [latex]12+2(5-3y)=-9(y-1)-2[/latex]
37. [latex]-15+4(2-5y)=-7(y-4)+4[/latex]
Solution
[latex]y=-3[/latex]
38. [latex]8(x-4)-7x=14[/latex]
39. [latex]5(x-4)-4x=14[/latex]
Solution
[latex]x=34[/latex]
40. [latex]5+6(3s-5)=-3+2(8s-1)[/latex]
41. [latex]-12+8(x-5)=-4+3(5x-2)[/latex]
Solution
[latex]x=-6[/latex]
42. [latex]4(u-1)-8=6(3u-2)-7[/latex]
43. [latex]7(2n-5)=8(4n-1)-9[/latex]
Solution
[latex]n=-1[/latex]
44. [latex]4(p-4)-(p+7)=5(p-3)[/latex]
45. [latex]3(a-2)-(a+6)=4(a-1)[/latex]
Solution
[latex]a=-4[/latex]
46. [latex]-(9y+5)-(3y-7)=16-(4y-2)[/latex]
47. [latex]-(7m+4)-(2m-5)=14-(5m-3)[/latex]
Solution
[latex]m=-4[/latex]
48. [latex]4\left[5-8(4c-3)\right]=12(1-13c)-8[/latex]
49. [latex]5\left[9-2(6d-1)\right]=11(4-10d)-139[/latex]
Solution
[latex]d=-3[/latex]
50. [latex]3\left[-9+8(4h-3)\right]=2(5-12h)-19[/latex]
51. [latex]3\left[-14+2(15k-6)\right]=8(3-5k)-24[/latex]
Solution
[latex]k=\frac{3}{5}[/latex]
52. [latex]5\left[2(m+4)+8(m-7)\right]=2\left[3(5+m)-(21-3m)\right][/latex]
53. [latex]10\left[5(n+1)+4(n-1)\right]=11\left[7(5+n)-(25-3n)\right][/latex]
Solution
[latex]n=-5[/latex]
54. [latex]5(1.2u-4.8)=-12[/latex]
55. [latex]4(2.5v-0.6)=7.6[/latex]
Solution
[latex]v=1[/latex]
56. [latex]0.25(q-6)=0.1(q+18)[/latex]
57. [latex]0.2(p-6)=0.4(p+14)[/latex]
Solution
[latex]p=-34[/latex]
58. [latex]0.2(30n+50)=28[/latex]
59. [latex]0.5(16m+34)=-15[/latex]
Solution
[latex]m=-4[/latex]
Exercises: Classify Equations
Instructions: For questions 60-79, classify each equation as a conditional equation, an identity, or a contradiction and then state the solution.
60. [latex]23z+19=3(5z-9)+8z+46[/latex]
61. [latex]15y+32=2(10y-7)-5y+46[/latex]
Solution
identity; all real numbers
62. [latex]5(b-9)+4(3b+9)=6(4b-5)-7b+21[/latex]
63. [latex]9(a-4)+3(2a+5)=7(3a-4)-6a+7[/latex]
Solution
identity; all real numbers
64. [latex]18(5j-1)+29=47[/latex]
65. [latex]24(3d-4)+100=52[/latex]
Solution
conditional equation; [latex]d=\frac{2}{3}[/latex]
66. [latex]22(3m-4)=8(2m+9)[/latex]
67. [latex]30(2n-1)=5(10n+8)[/latex]
Solution
conditional equation; [latex]n=7[/latex]
68. [latex]7v+42=11(3v+8)-2(13v-1)[/latex]
69. [latex]18u-51=9(4u+5)-6(3u-10)[/latex]
Solution
contradiction; no solution
70. [latex]3(6q-9)+7(q+4)=5(6q+8)-5(q+1)[/latex]
71. [latex]5(p+4)+8(2p-1)=9(3p-5)-6(p-2)[/latex]
Solution
contradiction; no solution
72. [latex]12(6h-1)=8(8h+5)-4[/latex]
73. [latex]9(4k-7)=11(3k+1)+4[/latex]
Solution
conditional equation; [latex]k=26[/latex]
74. [latex]45(3y-2)=9(15y-6)[/latex]
75. [latex]60(2x-1)=15(8x+5)[/latex]
Solution
contradiction; no solution
76. [latex]16(6n+15)=48(2n+5)[/latex]
77. [latex]36(4m+5)=12(12m+15)[/latex]
Solution
identity; all real numbers
78. [latex]9(14d+9)+4d=13(10d+6)+3[/latex]
79. [latex]11(8c+5)-8c=2(40c+25)+5[/latex]
Solution
identity; all real numbers
Exercises: Everyday Math
Instructions: For questions 80-81, answer the given everyday math word problems.
80. Fencing. Micah has [latex]44[/latex] feet of fencing to make a dog run in his yard. He wants the length to be [latex]2.5[/latex] feet more than the width. Find the length, [latex]L[/latex], by solving the equation [latex]2L+2(L-2.5)=44[/latex].
81. Coins. Rhonda has [latex]$1.90[/latex] in nickels and dimes. The number of dimes is one less than twice the number of nickels. Find the number of nickels, [latex]n[/latex], by solving the equation [latex]0.05n+0.10(2n-1)=1.90[/latex].
Solution
[latex]8[/latex] nickels
Exercises: Writing Exercises
Instructions: For questions 82-85, answer the given writing exercises.
82. Using your own words, list the steps in the general strategy for solving linear equations.
83. Explain why you should simplify both sides of an equation as much as possible before collecting the variable terms to one side and the constant terms to the other side.
Solution
Answers will vary.
84. What is the first step you take when solving the equation [latex]3-7(y-4)=38[/latex]? Why is this your first step?
Solution
Answers will vary.
An equation that is true for one or more values of the variable and false for all other values of the variable is a conditional equation.
An equation that is true for any value of the variable is called an identity. The solution of an identity is all real numbers
An equation that is false for all values of the variable is called a contradiction. A contradiction has no solution