75 1.1. Introduction to Algebra — Mathematics for Public and Occupational Health Professionals

<!– pb_fixme –>

Introduction

Review of basic algebraic terms:

Algebraic term Description Example
 Algebraic expression A mathematical phrase that contains numbers, variables (letters), and arithmetic operations (+, , ×, ÷, etc.).

Term

A term can be a constant, a variable, or the product of a number and variable. (Terms are separated by a plus or minus sign.)

 

Polynomial: an algebraic expression that contains one or more terms.                                     

Example:    7x ,       5ax – 9b ,       6x2 5x + \frac{2}{3} ,       7a2+ 8b + ab – 5

 

There are special names for polynomials that have one, two, or three terms:

  • Monomial: an algebraic expression that contains only one term.

Example:       9x ,       4xy2 ,       0.8mn2  ,       \frac{1}{3}a2b

  • Binomial: an algebraic expression that contains two terms.

Example:          ax2+ bx + c ,       4qp2 + 3q + 5

 

Combining Terms

Like terms: terms that have the same variables and exponents (the coefficients can be different).

Examples:

Example Like or unlike terms
7y   and   -9y Like terms
6a2,   -32a2,   and   –a2 Like terms
0.3 x2y   and   -48x2y Like terms
\frac{-2}{7}u2v3   and   u2v3 Like terms
-8y   and   78x Unlike terms
6m3   and   -9m2 Unlike terms
-9u3w2   and   -9w3u2 Unlike terms

 

Combine like terms: add or subtract their coefficients and keep the same variables and exponents.

Note: unlike terms cannot be combined.

 

Removing Parentheses

If the sign preceding the parentheses is positive (+), do not change the sign of terms inside the parentheses, just remove the parentheses.

Example:     (x 5) = x 5

If the sign preceding the parentheses is negative (-), remove the parentheses and the negative sign (in front of parentheses), and change the sign of each term inside the parentheses.

Example:    – (x 7) = x + 7

 

Remove parentheses:  

Algebraic expression Remove parentheses Example
  (ax + b) ax + b (5x + 2) = 5x + 2
  (ax b) ax b (9y – 4) = 9y – 4
– (ax + b) -ax b – (\frac{3}{4}x + 7) = \frac{3}{4}x 7
– (ax b) -ax + b – (0.5b – 2.4) = -0.5b + 2.4

 

 

Multiplying and Dividing Algebraic Expressions

Multiplying a monomial and a polynomial:

  • Use the distributive property: a (b + c) = ab + ac
  • Multiply coefficients and add exponents with the same base.          Apply aman = am+n

 

Dividing a polynomial by a monomial:
 

  • Split the polynomial into several parts.
  • Divide a monomial by a monomial.                      Apply \frac{a^m}{a^n}=a^{m-n}.

 

The FOIL method:
 an easy way to find the product of two binomials (two terms).

(a + b) (c + d) = ac + ad + bc + bd
                           F      O      I      L
Example
F – First terms first term × first term               (a + b) (c + d) (x + 5) (x + 4)
O – Outer terms outside term × outside term     (a + b) (c + d) (x + 5) (x + 4)
I – Inner terms inside term × inside term         (a + b) (c + d) (x + 5) (x + 4)
L – Last terms last term × last term                 (a + b) (c + d) (x + 5) (x + 4)

 

FOIL method Example
(a + b) (c + d) = ac + ad + bc + bd (x + 5) (x + 4) = x ∙ x + x ∙ 4 + 5x + 5 ∙ 4 = x2 + 9x + 20
                           F     O      I       L                              F        O       I       L

 

Multiplying binomials (2 terms × 2 terms):
 

                                         F             O           I             L 

The FOIL method.
=10x^2-12x+15x-18 an am = an+ m
=10x^2+2x-18 Combine like terms.

 

2) (3r - t)(5r+t^2)=3r \cdot 5r+3r \cdot t^2-t \cdot 5r-t \cdot t^2 FOIL
=15r^2+3rt^2-5rt-t^3 an am = an+m
=18r^2+-5rt-t^3 Combine like terms.

 

3) (xy^2+y)(2x^2y+x)=xy^2 \cdot 2x^2y+xy^2 \cdot x+y \cdot 2x^2y+yx FOIL
=2x^3y^3+x^2y^2+2x^2y^2+xy an am = an+m
=2x^3y^3+3x^2y^2+xy  Combine like terms.

 

4) (a-\frac{1}{3})(a-\frac{1}{3})=a^2-\frac{1}{3}a-\frac{1}{3}a+(-\frac{1}{3})(-\frac{1}{3}) FOIL
=a^2-\frac{2}{3}a+\frac{1}{9} Combine like terms.

 

Practice questions                                               

1. Identify the terms of each polynomial:

2. Combine like terms:

3. Simplify:

 

<!– pb_fixme –>

<!– pb_fixme –>
<!– pb_fixme –>

License

Math Copyright © by sboschman. All Rights Reserved.

Share This Book