"

11.3. Practice Sets: Circular Motion

Chapter Equations

[latex]\theta=\frac{s}{r}\text{ [rad]}[/latex] (1)
[latex]\omega=\frac{\Delta \theta}{t}\text{ [rad/s]}[/latex]   (2)
[latex]\omega=\frac{v}{r}[/latex] or [latex]v=\omega r\text{ }[\frac{m}{s}][/latex]  (3)
[latex]f=\frac{1}{T}\text{ [Hz]}[/latex]   (4)
[latex]\omega=2\pi f[/latex] or [latex]\omega=\frac{2\pi}{T}\text{ [rad/s]}[/latex]   (5)
[latex]a_c=\frac{v^2}{r} [m/s^2][/latex]   (6)
[latex]F_c=m\times\frac{v^2}{r}\text{ [N]}[/latex]   (7)
[latex]\alpha=\frac{\omega_f-\omega_i}{t} [rad/s^2][/latex]   (8)
[latex]\theta=\omega_it+\frac{1}{2}\alpha t^2\text{ [rad]}[/latex]   (9)
[latex]\theta=\frac{\omega_i+\omega_f}{2}\times t\text{ [rad]}[/latex]   (10)
[latex]\omega_f^2=\omega_i^2+2\alpha\theta[/latex]   (11)

Try It!

  1. A cutting disc slows down to a rest from a high angular velocity of [latex]540 \text { rad/s}[/latex]. True or false?
    1. This is an accelerated circular motion. [latex](T/F)[/latex]
    2. The angular acceleration is positive. [latex](T/F)[/latex]
  2. If it takes a flywheel 10 seconds to complete one rotation, then the information should be interpreted as (circle the correct answer):
    1. The frequency of the motion is [latex]10 s[/latex].
    2. The period of the motion is [latex]10 s[/latex].
    3. The total time the flywheel was in motion is [latex]10 s[/latex].
  3. If a gear completes 8 full rotations at a constant angular velocity, then the information should be interpreted as (circle the correct answer):
    1. The displacement of the gear is [latex]8 \text{ rad}[/latex].
    2. The displacement of the gear is approximately [latex]50.3 \text{ rad}[/latex].
    3. The angular velocity of the gear is [latex]8 \text{ rad/s}[/latex].
    1. The centripetal acceleration is defined only for an accelerated circular motion. [latex](T/F)[/latex]
    2. The direction of the centripetal acceleration is tangential to the circular path of the object. [latex](T/F)[/latex]
    3. The centripetal acceleration has the same units as the angular acceleration. [latex](T/F)[/latex]
    4. The centripetal acceleration is directly proportional to the square of the tangential speed and inversely proportional to the radius of the circle. [latex](T/F)[/latex]

Practice

  1. A rotating flywheel of diameter [latex]40.0 \text{ cm}[/latex] uniformly accelerates from rest to [latex]250 \text{ rad/s}[/latex] in [latex]15.0 \text{ s}[/latex].
    1. Find its angular acceleration.
      Answer:

      [latex]16.67\text{ rad/s}^2[/latex]
    2. Find the linear velocity of a point on the rim of the wheel after [latex]15.0 s[/latex].
      Answer:

      [latex]50\text{ m/s}[/latex]
    3. How many revolutions did the wheel make during the [latex]15.0 s[/latex]?
      Answer:

      [latex]298.4\text{ rev}[/latex]
  2. A [latex]1.00\text{ kg}[/latex] rock is swung at the end of a rope in a horizontal circle of radius [latex]1.50 \text{ m}[/latex]. If one complete revolution takes [latex]0.80 \text{ s}[/latex]:
    1. What is the speed of the rock?
      Answer:

      [latex]11.8 \text{ m/s}[/latex]
    2. What is the centripetal acceleration of the rock?
      Answer:

      [latex]92.4 \text{ m/s}^2[/latex]
    3. What is the centripetal force exerted on the rock?
      Answer:

      [latex]92.4 \text{ N}[/latex]
  3. A wheel rotates through an angle of [latex]13.8 \text { rad}[/latex] as it slows down from [latex]22.0 \text { rad/s}[/latex] to [latex]13.5 \text { rad/s}[/latex]. What is the magnitude of the average angular acceleration of the wheel?
    Answer:

    [latex]-10.9\text {rad/s}^2[/latex]
  4. A wheel that is rotating at [latex]33.3 \text{ rad/s}[/latex] is given an angular acceleration of [latex]2.15 \text{ rad/s}[/latex]. Through what angle has the wheel turned when its angular speed reaches [latex]72.0 \text{ rad/s}[/latex]?
    Answer:

    [latex]947.7 \text {rad}[/latex]
  5. A flywheel turns at [latex]320 \text{ rpm}[/latex].
    1. What is the angular speed at any point on the wheel?
      Answer:

      [latex]33.5 \text {rad/s}[/latex]
    2. What is the tangential speed [latex]25.0 \text{ cm}[/latex] from the centre?
      Answer:

      [latex]8.4 \text{ m/s}[/latex]
  6. A wheel revolving at [latex]10.0 \text{ rev/s}[/latex] has an angular acceleration of [latex]3.00 \text { rad/s}^2[/latex].
    1. Find the angular displacement of the wheel to reach [latex]22.0 \text{ rev/s}[/latex].
      Answer:

      [latex]2526.7 \text {rad}[/latex]
    2. Find the time needed for the wheel to go from [latex]10.0 \text{ rev/s}[/latex] to [latex]22.0 \text{ rev/s}[/latex].
      Answer:

      [latex]2.5 \text{ s}[/latex]
  7. A race car, moving at a tangential speed of [latex]60 \text{ m/s}[/latex], takes one full lap of the track in [latex]50 s[/latex]. What is the centripetal acceleration of the car?
    Answer:

    [latex]7.5 \text{ m/s}^2[/latex]
  8. An object moving on a circular path with a radius of [latex]0.02 \text{ m}[/latex], has a centripetal acceleration of [latex]13 \text{ m/s}^2[/latex]. Find the frequency of the motion.
    Answer:

    [latex]4.1 \text{ hz}[/latex]

Challenge Question(s)

Text Version of the Challenge Question(s)
  • If a Ferris wheel has height of [latex]100 \text{ m}[/latex], find the angular velocity in rotations per minute if the riders in the carts are going [latex]7 \text{ m/s}[/latex].
    Answer: [latex]1.34\text{ rpm}[/latex]
  • Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its [latex]0.35\text{ m}[/latex] radius wheels an angular acceleration of [latex]0.25\text{ rad/s}^2[/latex]. After the wheels have made [latex]200[/latex] revolutions (assume no slippage):
    1. How far has the train moved down the track?
      Answer: [latex]439.8\text{ m}[/latex]
    2. What are the final angular velocity of the wheels and the linear velocity of the train?
      Answer: [latex]25.07\text{ rad/s}, 8.77\text{ m/s}[/latex]
  • A toy plane is suspended from a string and flying in a horizontal circle. The mass of the plane is [latex]631\text{ g}[/latex] and the plane makes a complete circle every [latex]2.15\text{ seconds}[/latex]. The radius of the circle is [latex]0.950\text{ m}[/latex]. Find:
    1. The velocity of the plane.
      Answer: [latex]2.78\text{ m/s}[/latex]
    2. The acceleration of the plane.
      Answer: [latex]8.11\text{ m/s}^2[/latex]
    3. The net force actin on the plane.
      Answer: [latex]5.12\text{ N}[/latex]
  • During a gust of wind, the blades of the windmill are given an angular acceleration of [latex]0.4\text{ rad/s}^2[/latex]. If initially the blades have an angular velocity of [latex]4.0\text{ rad/s}[/latex], determine the speed (in [latex]\text{ft/s}[/latex] of point located at the tip of one of the blades just after the blade has turned three revolutions. The length of the blades is [latex]3.0\text{ ft}[/latex].
    Answer: [latex]16.7\text{ ft/s}[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

College Physics – Fundamentals and Applications Copyright © by Daniela Stanescu, Centennial College is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.