"

1.2. Solved Examples: Units and Unit Conversions; Systems of Measurement

Example 1. Converting between two sets of SI units

Convert [latex]45 \text{ km/h}[/latex] to [latex]\text{ m/s}[/latex].

Solution:

We need to create two conversion factors: one to change kilometres to metres, and one to change hours to seconds.

[latex]{45 \, \text{km/h}} \times \frac{1000 \, \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{h}}{3600 \, \text{s}} = {12.5 \, \text{m/s}}[/latex]

Answer:

[latex]{12.5 \, \text{m/s}}[/latex]


Example 2. Converting between an SI unit and an Imperial unit

Convert [latex]0.57 \text{ ft}[/latex] to metres, knowing that [latex]1 \text{ inch}[/latex] = [latex]2.54 \text{ cm}[/latex] and [latex]1 \text{ ft}[/latex] = [latex]12 \text{ inch}[/latex].

Solution:

We need to create three conversion factors: one to change the unit of measurement from feet to inches, the second to change the unit of measurement from inches to centimetres, and the last to change the unit of measurement from centimetres to metres.

[latex]{0.57 \, \text{ft}} \times \frac{12 \, \text{in}}{1 \, \text{ft}} \times \frac{2.54 \, \text{cm}}{1 \, \text{in}} \times \frac{1 \, \text{m}}{100 \, \text{cm}} = {0.17 \, \text{m}}[/latex]

Answer:

[latex]{0.17 \, \text{m}}[/latex]


Example 3. Calculating areas and converting between area units

  • Calculate the cross-sectional area of the figure below.
  • Convert from [latex]\text{mm}^2[/latex] to [latex]\text{m}^2[/latex].
2D yellow-shaded drawing with labeled mm dimensions, showing a stepped shape and a 25 mm slanted edge on the right.

Answer:

  • [latex]20 \times 60 + 20 \times 30 + \frac{25 \times 20}{2} = 2050 \text{ mm}^{2}[/latex]
  • [latex]2050 \text{ mm}^{2} \times 10^{-6} = 2.050 \times 10^{-3} \text{ m}^{2}[/latex]

Example 4. Calculating volume

Find the volume of the rectangular prism shown below.

3D yellow rectangular prism labeled Item a, with dimensions 30 cm long, 10 cm wide, and 20 cm high.
3D yellow cube labeled Item b, with arrows marking equal sides of 1 cm in length, width, and height.
Figure 1.7 a) Volume of a rectangular prism; b) Volume of a 1 cm3 cube

Answer:

It will take [latex]6000[/latex] small cubes to fill out that rectangular prism, so that the volume of the prism is[latex]\text{ V } = 6000 \, \text{cm}^{3}[/latex].


Example 5. Calculating volumes and converting between volume units

  • Calculate the volume of the shape above in [latex]\text{m}^3[/latex].
  • Convert the volume to [latex]\text{in}^3[/latex].
A composite 3D shape made of two stacked rectangular prisms with labeled dimensions in centimeters.

Answer:

  • [latex]{30 \times 15 \times 10 + 45 \times 10 \times 20 = 13{,}500 \text{ cm}^{3} = 0.0135 \text{ m}^{3}}[/latex]
  • [latex]13{,}500 \text{ cm}^{3} \times \frac{1 \text{ in}^{3}}{(2.54)^{3} \text{ cm}^{3}} = 823.82 \text{ in}^{3}[/latex]

Try it!

Choose the correct solution:

When we convert from a bigger unit (such as a kilometre) to a smaller unit (such as a metre), we multiply by a power of 10 that has a:

  • positive exponent
  • negative exponent

When converting between units of volume, what is the correct approach:

  • [latex]2 \text{ m}^{3}[/latex] converted to [latex]\text{in}^{3}[/latex] will be converted as:
    [latex]{2 \text{ m}^{3}} \times \frac{10^{6} \, \text{cm}^{3}}{1 \, \text{m}^{3}} \times \frac{1 \, \text{in}^{3}}{(2.54)^{3} \, \text{cm}^{3}} = {1.22 \times 10^{5} \, \text{in}^{3}}[/latex]
  • [latex]2 \text{ m}^{3}[/latex] converted to [latex]\text{in}^{3}[/latex] will be converted as:
    [latex]{2 \, \text{m}^{3}} \times \frac{10^{6} \, \text{cm}^{3}}{1 \, \text{m}^{3}} \times \frac{1 \, \text{in}^{3}}{2.54 \, \text{cm}^{3}} = {7.87 \times 10^{5} \, \text{in}^{3}}[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

College Physics – Fundamentals and Applications Copyright © by Daniela Stanescu, Centennial College is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.