"

10 Integer Exponents

 

Laws of exponents

    \[ \begin{matrix} x^a x^b = x^{a+b} \qquad & (x y)^a= x^a y^a \qquad & (x^a)^b= x^{ab} \\ \\ \displaystyle{ \frac{x^a}{x^b}= x^{a-b}} \qquad & \displaystyle{ \frac{x^a}{x^b}= \frac{1}{ x^{b-a}} } \qquad & \displaystyle{ \Big( \frac{x}{y}\Big)^a = \frac{x^a}{y^a}}\\ \\ \displaystyle{ \Big(\frac{x}{y}\Big)^{-m}= \Big(\frac{y}{x}\Big)^{m}} \qquad & \displaystyle{ \frac{x^{-n}}{x^{-m}}= \frac{y^m}{ x^{n}} } \qquad & \end{matrix} \]

 

x^n =  x\, . x\, . \ldots\, . x \qquad \qquad     n  factors of x

x^0 =1   for any nonzero number

0^0  is not defined

x^{-n} = \displaystyle{ \frac{1}{x^n} }

0^{-n}  is not defined for any n positive integer.

 

 

Watch a Video


View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

Using laws of exponents, we have

    \[ \displaystyle{  \frac{a^{{-5}}  \Big( {-2} a^{{-2}} \Big)^{{4}} }{ a^{{3}} }  = ({-2})^{{4}} a^{({-2}).({4} ) +( {-5}) -({3}) } = {16} a^{{-16}}  }.\]

 

 

Exercise 2

 

Show/Hide Solution.

Using laws of exponents, we have

    \[ \displaystyle{  \frac{ ( x^{{-4}}    y^{{5}} )^4  ( x^{{-4}}    y^{{5}} )^{-3} } { x^{{-7}}    y^{{8}} } =   \frac{ x^{4({-4}) + (-3)({-4})} .   y^{4({5}) + (-3)({5}) } }{ x^{{-7}}    y^{{8}} } =  \frac{ x^{{-4}}    y^{{5}} } { x^{{-7}}    y^{{8}} }  =\frac{     x^{{-4} -( {-7})} } {    y^{{8} - {5}} }  = \frac{       x^{{3}}  } {    y^{{3}}  }     } .\]

 

 

Exercise 3

 

Show/Hide Solution.

Using laws of exponents, we have

    \[ \displaystyle{  \Big(  \frac{ y^{{3}} x^{{-6}} }{ y^{{4}}  x^{{-5}} }\Big) \Big(\frac{  x^{{-7}}  }{  y^{{-2}} }    \Big)^{3}  =\frac{       y^{{3} - ({4}) -3({-2}) }  } {    x^{{-5}-({-6}) -3({-7}) } }  = \frac{       y^{{5}}  } {    x^{{22}} }   } .\]

 

 

Exercise 4

 

Show/Hide Solution.

Using laws of exponents, we have

    \[ \Big( {6} x^{{3}} y^{{6}}  \Big)\Big( \frac{1}{{3}}  y^{{4}} \Big)  =  \frac{{6}}{ {3}}  x^{{3}}y^{({6})+({4}) } ={2} x^{{3}} y^{{10}}   .\]

 

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.