10 Integer Exponents
Laws of exponents
![Rendered by QuickLaTeX.com \[ \begin{matrix} x^a x^b = x^{a+b} \qquad & (x y)^a= x^a y^a \qquad & (x^a)^b= x^{ab} \\ \\ \displaystyle{ \frac{x^a}{x^b}= x^{a-b}} \qquad & \displaystyle{ \frac{x^a}{x^b}= \frac{1}{ x^{b-a}} } \qquad & \displaystyle{ \Big( \frac{x}{y}\Big)^a = \frac{x^a}{y^a}}\\ \\ \displaystyle{ \Big(\frac{x}{y}\Big)^{-m}= \Big(\frac{y}{x}\Big)^{m}} \qquad & \displaystyle{ \frac{x^{-n}}{x^{-m}}= \frac{y^m}{ x^{n}} } \qquad & \end{matrix} \]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-3a951ac7c3b2c87e02cd923eec222d0e_l3.png)
factors of ![]()
for any nonzero number
is not defined
![]()
is not defined for any
positive integer.
Exercise 1
Show/Hide Solution.
Using laws of exponents, we have
![Rendered by QuickLaTeX.com \[ \displaystyle{ \frac{a^{{-5}} \Big( {-2} a^{{-2}} \Big)^{{4}} }{ a^{{3}} } = ({-2})^{{4}} a^{({-2}).({4} ) +( {-5}) -({3}) } = {16} a^{{-16}} }.\]](https://ecampusontario.pressbooks.pub/app/uploads/quicklatex/quicklatex.com-6cc68c5bc4afdfe79069880b796cb2c4_l3.png)
Exercise 2
Show/Hide Solution.
Using laws of exponents, we have
![]()
Exercise 3
Show/Hide Solution.
Using laws of exponents, we have
![]()
Exercise 4
Show/Hide Solution.
Using laws of exponents, we have
![]()