"

5 Absolute Value of a Real Number

 

\bullet\qquad The absolute value of a\in \mathbb{R} is the number |a| defined by
 

    \[|a| = \left\{\begin{matrix} a & \hbox{ if } \quad a\geqslant 0 \\ \\ - a & \hbox{ if } \quad a < 0\end{matrix}\right.\]

 

\bullet\qquad |a-b| is the distance between the real numbers a and b.

 

\bullet\qquad | - a| = |a| \qquad \qquad \qquad \sqrt{a^2} = |a|\qquad \qquad \qquad | a \times b |= |a| \times |b|
                             

    \[ \qquad| a+ b| \leqslant |a| + |b| \qquad \hbox{triangular inequality} \]

 

Watch a Video

View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

The distance between a and b is equal to d(a,b) = |a-b| where

| a - b | = a - b if a\geq b and | a- b | = - a + b if a\leq b.

 

Exercise 2

 

Exercise 3

 

Show/Hide Solution.

For the last expression, we have

\displaystyle{ |(-8)- 5| -2 |-3| + | 3(-4)| -\Big| \frac{10}{-2}\Big| - \frac{|-15|}{-3} + 0.5 + \frac{1}{4} |-2| }

\displaystyle{= |-13| -6+ | -12| -\Big|-5\Big| +5 + 0.5 + 0.25 (2) }
= 13 -6 +12 - 5 +5 + 1= 20.

 

Exercise 4

 

Show/Hide Solution.

* For x\geq 5, we have |x-5| = x-5, then

|x-5| = x+5 \quad \Leftrightarrow \quad x-5 = x+5 \quad \Leftrightarrow \quad -5 = 5

leads to a contradiction.

** For x< 5, we have |x-5| = -(x-5) = 5- x, then

|x-5| = x+5 \quad \Leftrightarrow \quad -x+5 = x+5 \quad \Leftrightarrow \quad x = 0.

*** The equality is true only for x=0.

 

Exercise 5

 

Show/Hide Solution.

We have

- |- 4 - x^2| = - |-(4+x^2)| = - |-1| |4 + x^2| = - (1) |4 + x^2|.

Since 4 + x^2\geq 4 >0, we deduce that |4 + x^2| = 4 + x^2.

Thus, the statement is true.

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.