"

22 Absolute Value and Inequations

For \quad b>0,

\bullet\qquad  |a| < b \qquad \Longleftrightarrow\qquad  -b< a < b 

ex.

    \[\qquad  |x-5| < 3 \quad \Longleftrightarrow\quad -3<x-5< 3 \]

    \[\quad \Longleftrightarrow\quad -3+5 < x-5+ 5< 3+5 \quad\Longleftrightarrow \quad 2<x<8 \]

 

 

\bullet\qquad  |a| >b \quad\quad \qquad \Longleftrightarrow\qquad a<- b \quad\hbox{ or }\quad a >b

ex.

    \[\qquad  |x-5| >3 \qquad \Longleftrightarrow\qquad x-5< -3 \quad\hbox{ or }\quad x-5> 3\]

    \[\qquad \qquad\Longleftrightarrow\qquad x<2\quad\hbox{ or }\quad  x>8\]

    \[\qquad \qquad\Longleftrightarrow\qquad x\in (-\infty, 2)\cup (8, +\infty)\]

 

Watch a Video

View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

The set of possible solutions is the interval : \qquad I = \Big( 0, \displaystyle{\frac{1}{4}}\Big).

 

Exercise 2

 

Show/Hide Solution.

The set of possible solutions is the interval : \qquad I = \Big( -\infty, -42\Big]\cup \Big[38, +\infty\Big).

 

Exercise 3

 

Show/Hide Solution.

The set of possible solutions is the interval : \qquad I = \Big( 2,  6\Big).

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.