"

19 Linear Inequations

\bullet  A linear  inequality is a statement in the form  a x + b < 0, or  a x + b > 0, or  a x + b \leqslant 0, or a x + b \geqslant 0, where x  is a variable.

The variable that makes the statement true is called a solution  of the equation.

\bullet   How to solve, for example,   a x + b < 0 ?

                 -  combine all variable terms in one side

                 -  combine all constants terms on the other

                  -  divide both sides by the coefficient of the
variable and change the inequality to ">" if a<0.

 

\bullet
    \[ a x + b < 0\quad\Longleftrightarrow\quad a x +b + (-b) < 0+(- b) \quad\Longleftrightarrow\quad a x < - b\]

\quad \Longleftrightarrow \quad   \left\{ \begin{matrix}     x< - \frac{b}{a}\quad & \hbox { if } \quad a> 0 \\ \\ x > - \frac{b}{a}\quad & \hbox { if } \quad a< 0 \\ \\  \hbox{ no solution } \quad & \hbox { if } \quad a = 0 \quad \hbox { and }  \quad b> 0\\ \\ \hbox{ infinite solution } \quad & \hbox { if } \quad a =0 \quad \hbox { and }  \quad b< 0 \end{matrix} \right.

 

Watch a Video


View on YouTube

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

The set of possible solutions is the interval: \displaystyle{ I= [-\frac{37}{3}, +\infty).

 

Exercise 2

 

Show/Hide Solution.

The set of possible solutions is the interval: \displaystyle{ I= \Big(\frac{1}{3}, \frac{49}{9}\Big].

 

Exercise 3

 

Show/Hide Solution.

We have

\displaystyle{-  \Big(\frac{y+8}{2} \Big)   +  3(y  + 1 )\leq  -1 + \frac{5}{2} y  }

\Longleftrightarrow\qquad \displaystyle{ \Big(-\frac{1}{2}  + 3 -\frac{5}{2} \Big)  y  \leq  -1  -3 + 4   }

\Longleftrightarrow\qquad \displaystyle{ \Big(0  \Big)  y  \leq 0   }

which is true for any y\in \mathbb{R} since \Big(0  \Big)  y =0 \leq 0 \forall y.

The set of all possible solutions is the interval: \displaystyle{ I= (-\infty, +\infty).

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.