"

17 Linear Equations

 

\bullet  A linear equation is a statement in the form  a x + b = 0, where x  is a variable.

                  The variable that makes the statement true is called a solution  of the equation.

\bullet   How to solve  a x + b = 0 ?

                  – combine all variable terms in one side

                  – combine all constants terms on the other

                  – divide both sides by the coefficient of the variable.

\bullet

a x + b = 0 \,\,\Longleftrightarrow\,\, a x = - b \,\,\Longleftrightarrow    \left\{ \begin{matrix}     x= - \frac{b}{a} & \hbox { if } \quad a\neq 0 \\ \\  \hbox{ no solution }  & \hbox { if } \quad a = 0 \quad \hbox { and }  \quad b\neq 0\\ \\ \hbox{ infinite solution } & \hbox { if } \quad a =0 \quad \hbox { and }  \quad b= 0 \end{matrix} \right.

 

Watch a Video

View on YouTube
 

 

Exercise 1

 

Show/Hide Solution.

We have

\displaystyle{ {-2} - 2 [ {-5} - 3 ( {4} - x ) ] = {2} }

\displaystyle{\qquad \Leftrightarrow \qquad {-2} - 2 ({-5}) + 6 ({4}) - 6 x = {2} }

\displaystyle{\qquad \Leftrightarrow \qquad x= \frac{1}{6 } ({-2}- ({2} )- 2 ({-5}) + 6( {4} )) = \frac{{30}}{6} =5. }

 

Exercise 2

 

Show/Hide Solution.

For x\not= 0, we have

\displaystyle{\frac{x + 1}{{8}} = \frac{x - 1}{{8}} + \frac{{9}}{x} }

\displaystyle{\qquad \Leftrightarrow \qquad \frac{x + 1}{{8}} = \frac{x (x - 1) + ( {8} ) ({9} )}{{9} x} }

\qquad \Leftrightarrow \qquad ( {8}) x\Big(x + 1\Big) = {8}\Big(x (x - 1) + ({8} )({9} )\Big)

\displaystyle{\qquad \Leftrightarrow \qquad x^2 + x = x^2-x + ( {8} ) ({9} )

\qquad \Leftrightarrow \qquad x= \displaystyle{ \frac{{8} ({9})}{2} = \frac{{72}}{2} = 36.}

 

Exercise 3

 

Show/Hide Solution.

For x\neq \pm 1, we have

\displaystyle{ \frac{{6}}{x-1} + \frac{{4}}{x+1} = \frac{ {4} }{x^2-1} }

\displaystyle{ \qquad \Leftrightarrow \qquad \frac{{6} (x+1) + {4} (x-1)}{x^2-1} = \frac{ {4} }{x^2-1} }

\displaystyle{\qquad \Leftrightarrow \qquad ({6}+{4}) x + {6}- {4} = {4} }

\displaystyle{ \qquad \Leftrightarrow \qquad x= \frac{ {4} + {4} - {6} }{{6}+{4}} = \frac{{2} }{{10}} = \frac{{1} }{{5}} } .

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.