"

16 Addition and Subtraction of Rational Expressions

 
\displaystyle{ \frac{P}{Q}     +  \frac{S}{T}  =   \frac{P T + Q S }{ST} }

 

 
\displaystyle{ \frac{P}{Q}     -  \frac{S}{T}  =   \frac{P T - Q S }{ST} }

 

  \displaystyle{ \frac{P}{R}     +  \frac{S}{R}  =   \frac{P  +  S }{R} }

 

 \displaystyle{ \frac{P}{R}     -  \frac{S}{R}  =   \frac{P  -  S }{R} }

 

Watch a Video

View on YouTube
 

 

Show Examples

 

Exercise 1

 

Show/Hide Solution.

We have

\displaystyle{  x+4 + \frac{4}{ x+4 }    = \frac{x+4}{1 }   -   \frac{4}{x+4 } }

\displaystyle{=\frac{(x+4) (x+4)}{x+4 }   -   \frac{ 4}{x+4 } = \frac{ x^2 + 2 (4 )x +   (4)^2-{4} }{x+4} = \frac{ x^2 + 8 x + 20 }{x+4} }

The fraction is irreducible since the discriminant of  x^2 + 8 x + 20 is 8^2 - 4 (1)(20) <0.

 

 

Exercise 2

 

Show/Hide Solution.

On a

\displaystyle{\frac{ x }{ x^2+ 5x +6} -\frac{2}{ x + 2}  -  \frac{2}{ x + 3} =\frac{ x }{ (x + 2)(x + 3)} -\frac{2}{ x + 2}  -  \frac{2}{ x + 3} }

\displaystyle{=\frac{ x }{ (x + 2)(x + 3)} -\frac{2 (x+3) }{ (x + 2)(x+3)}  -  \frac{2 (x+2)}{ (x+3)(x+2)}}

\displaystyle{= \frac{ ( 1- 2 -2) x  - (2)(3) - (2)(3)  }{ (x + 2)(x+3)} }

\displaystyle{= \frac{-3x  - 10  }{(x + 2)(x+3) }  }

 

 

Exercise 3

 

Show/Hide Solution.

On a

\displaystyle{\frac{ x }{x^2 +  x - 20} -  \frac{ 5}{ x^2 -11x +28}  =\frac{ x }{ (x - 4)(x + 5)} -  \frac{5}{ (x - 4)(x - 7) } }

\displaystyle{=\frac{ x (x-7) }{ (x - 4)(x + 5)(x-7)} -  \frac{5(x + 5)}{ (x - 4)(x-7) (x + 5)}   }

\displaystyle{= \frac{ x^2  - (  7 + 5) x  - (5)  (5) }{ (x - 4)(x-7) (x + 5)}   }

\displaystyle{= \frac{ x^2 - 12x  -25  }{ (x - 4)(x-7) (x + 5)}   }

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.