"

4 Union, Intersection, and Intervals

 

Sets.  A set  is a collection of well defined  objects, called elements.

If A is a set and a an element of A, we denote  a\in A.

If b  is not an element of A, we denote  b\not\in A.

The empty set, denoted,  \emptyset , doesn’t contain any element.

 

 

 Subsets.  A set  A is a subset  of a set B  if each element of A is an element of B and we denote  A\subset B.

      \[ A\subset B \qquad \Longleftrightarrow \qquad  \Big( \forall x\in A  \quad \Rightarrow  \quad x\in B \Big) \]

    \[ \emptyset  \subset  A \qquad \hbox{   and  }  \qquad  A \subset A  \qquad\qquad  \hbox{for any set } A\]

    \[\Big( A \subset B \quad \hbox{ and } \quad B \subset C\quad \Rightarrow A \subset C \Big)\]

 

 Operations on sets

    \[\begin{matrix} A\cup B= \{ x : x\in A \quad \hbox{ or }\quad   x\in B\}  \qquad \qquad \hbox{ union of } A \hbox{ and } B \\ \\ A\cap B= \{ x : x\in A \quad \hbox{ and  }  \quad x\in B\} \qquad \qquad \hbox{ intersection of } A \hbox{ and } B\\ \\ A\setminus B= \{ x : x\in A \quad \hbox{ and }\quad x\not\in B\} \qquad \qquad \hbox{ difference of } A \hbox{ and } B \\ \\ A^c= \{ x : x\in  U\quad \hbox{ and } \quad x\not\in A\} \qquad \qquad \hbox{ complementary of } A \hbox{ in } U\\ \\ A \times B= \{ (x,y) : x\in A\quad \hbox{ and } \quad y\in B\} \qquad\qquad  \hbox{ product of } A \hbox{ and } B \\ \\  \quad  A\times A=A^2\end{matrix}\]

 

Intervals

    \[\begin{matrix} (a,b)= \{ x : \quad a< x< b\} \qquad \qquad \qquad (a,+\infty)= \{ x :\quad a< x\}\\ \\ [a,b]= \{ x : \quad a \leqslant x\leqslant b\}\qquad \qquad \qquad [a,+\infty)= \{ x : \quad a \leqslant x\} \\ \\ [a,b)= \{ x :\quad a \leqslant x< b\}\qquad \qquad \qquad (-\infty,b)= \{ x : \quad x< b\}\\ \\ (a,b]= \{ x :\quad a<x  \leqslant b\} \qquad \qquad \qquad (-\infty,b] = \{ x : \quad x \leqslant b\}\\ \\ (-\infty,+\infty)= \mathbb{R}\qquad \qquad \hbox{ set of all real numbers } \end{matrix} \]

 

Watch a Video

View on YouTube

 

Show Examples

 

Exercise 1

 

Exercise 2

 

Exercise 3

 

Exercise 4

 

Exercise 5

License

Icon for the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Guide to Precalculus Review Copyright © 2025 by Samia CHALLAL is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, except where otherwise noted.