10.1 The Chi Square Distribution
LEARNING OBJECTIVES
- Find the area under a [latex]\chi^2[/latex]-distribution.
- Find the [latex]\chi^2[/latex]-score for a given area under the curve of a [latex]\chi^2[/latex]-distribution.
The [latex]\chi^2[/latex]-distribution is a continuous probability distribution. The graph of a [latex]\chi^2[/latex]-distribution is shown below.
Properties of the [latex]\chi^2[/latex]-distribution:
- The graph of a [latex]\chi^2[/latex]-distribution is positively skewed and asymmetrical with a minimum value of 0 and no maximum value.
- A [latex]\chi^2[/latex]-distribution is determined by its degrees of freedom, [latex]df[/latex]. The value of the degrees of freedom depends on how the [latex]\chi^2[/latex]-distribution is used. There is a different [latex]\chi^2[/latex]-distribution for every value of [latex]df[/latex]. As the degrees of freedom increase, the [latex]\chi^2[/latex]-distribution approaches a normal distribution.
- The total area under the graph of a [latex]\chi^2[/latex]-distribution is 1.
- The mean of a [latex]\chi^2[/latex]-distribution is its degrees of freedom: [latex]\mu=df[/latex].
- The variance of a [latex]\chi^2[/latex]-distribution is twice its degrees of freedom: [latex]\sigma^2=2\times df[/latex].
- The mode of a [latex]\chi^2[/latex]-distribution is [latex]df-2[/latex]. The peak of the graph occurs at the mode.
- Probabilities associated with a [latex]\chi^2[/latex]-distribution are given by the area under the curve of the [latex]\chi^2[/latex]-distribution.
USING EXCEL TO CALCULATE THE AREA UNDER A [latex]{\color{white}{\chi^2}}[/latex]-DISTRIBUTION
To find the area in the left tail:
- To find the area under a [latex]\chi^2[/latex]-distribution to the left of a given [latex]\chi^2[/latex]-score, use the chisq.dist([latex]\chi^2[/latex], degrees of freedom, logic operator) function.
- For [latex]\chi^2[/latex], enter the [latex]\chi^2[/latex]-score.
- For degrees of freedom, enter the value of the degrees of freedom for the [latex]\chi^2[/latex]-distribution.
- For logic operator, enter true.
- The output from the chisq.dist function is the area to the left of the entered [latex]\chi^2[/latex]-score.
- Visit the Microsoft page for more information about the chisq.dist function.
To find the area in the right tail:
- To find the area under a [latex]\chi^2[/latex]-distribution to the right of a given [latex]\chi^2[/latex]-score, use the chisq.dist.rt([latex]\chi^2[/latex], degrees of freedom) function.
- For [latex]\chi^2[/latex], enter the [latex]\chi^2[/latex]-score.
- For degrees of freedom, enter the value of the degrees of freedom for the [latex]\chi^2[/latex]-distribution.
- The output from the chisq.dist.rt function is the area to the right of the entered [latex]\chi^2[/latex]-score.
- Visit the Microsoft page for more information about the chisq.dist.rt function.
EXAMPLE
Consider a [latex]\chi^2[/latex]-distribution with [latex]12[/latex] degrees of freedom.
- Find the area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2=3.71[/latex].
- Find the area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2=6.29[/latex].
Solution
-
Function chisq.dist Field 1 3.71 Field 2 12 Field 3 true Answer 0.0119 -
Function chisq.dist.rt Field 1 6.72 Field 2 12 Answer 0.8755
USING EXCEL TO CALCULATE [latex]{\color{white}{\chi^2}}[/latex]-SCORES
To find the [latex]\chi^2[/latex]-score for a given left-tail area:
- To find the [latex]\chi^2[/latex]-score for a given area under the [latex]\chi^2[/latex]-distribution to the left of the [latex]\chi^2[/latex]-score, use the chisq.inv(area to the left, degrees of freedom) function.
- For area to the left, enter the area to the left of required [latex]\chi^2[/latex]-score.
- For degrees of freedom, enter the value of the degrees of freedom for the [latex]\chi^2[/latex]-distribution.
- The output from the chisq.inv function is the value of the [latex]\chi^2[/latex]-score so that the area to the left of the [latex]\chi^2[/latex]-score is the entered area.
- Visit the Microsoft page for more information about the chisq.inv function.
To find the [latex]\chi^2[/latex]-score for a given right-tail area:
- To find the [latex]\chi^2[/latex]-score for a given area under the [latex]\chi^2[/latex]-distribution to the right of the [latex]\chi^2[/latex]-score, use the chisq.inv.rt(area to the right, degrees of freedom) function.
- For area to the right, enter the area to the right of required [latex]\chi^2[/latex]-score.
- For degrees of freedom, enter the value of the degrees of freedom for the [latex]\chi^2[/latex]-distribution.
- The output from the chisq.inv.rt function is the value of the [latex]\chi^2[/latex]-score so that the area to the right of the [latex]\chi^2[/latex]-score is the entered area.
- Visit the Microsoft page for more information about the chisq.inv.rt function.
EXAMPLE
Consider a [latex]\chi^2[/latex]-distribution with [latex]37[/latex] degrees of freedom.
- Find the [latex]\chi^2[/latex]-score so that the area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2[/latex] is [latex]0.25[/latex].
- Find the [latex]\chi^2[/latex]-score so that the area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2[/latex] is [latex]0.148[/latex].
Solution
-
Function chisq.inv Field 1 0.25 Field 2 37 Answer 30.89 -
Function chisq.dist.rt Field 1 0.148 Field 2 37 Answer 45.97
TRY IT
Consider a [latex]\chi^2[/latex]-distribution with [latex]28[/latex] degrees of freedom.
- Find the area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2=21.7[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2[/latex] is [latex]0.3[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2[/latex] is [latex]0.42[/latex].
- Find the area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2=17.3[/latex].
Click to see Solution
-
Function chisq.dist.rt Field 1 21.7 Field 2 28 Answer 0.795 -
Function chisq.inv Field 1 0.3 Field 2 28 Answer 23.65 -
Function chisq.inv.rt Field 1 0.42 Field 2 28 Answer 28.85 -
Function chisq.dist Field 1 17.3 Field 2 28 Field 3 true Answer 0.0576
Exercises
- If the number of degrees of freedom for a [latex]\chi^2[/latex]-distribution is [latex]25[/latex], what is the population mean and standard deviation?
Click to see Answer
[latex]\text{mean}=25[/latex], [latex]\text{standard deviation}=7.07[/latex]
- Where is mode located on a [latex]\chi^2[/latex]-distribution curve?
Click to see Answer
At the peak of the curve.
- The variance of a [latex]\chi^2[/latex]-distribution is [latex]36[/latex]. What is the mode?
Click to see Answer
[latex]16[/latex]
- Consider a [latex]\chi^2[/latex]-distribution with [latex]17[/latex] degrees of freedom.
- Find the area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2=15.3[/latex].
- Find the area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2=22.8[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2[/latex] is [latex]0.291[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2[/latex] is [latex]0.3156[/latex].
Click to see Answer
- [latex]0.426[/latex]
- [latex]0.1559[/latex]
- [latex]13.4[/latex]
- [latex]19.23[/latex]
- Consider a [latex]\chi^2[/latex]-distribution with [latex]12[/latex] degrees of freedom.
- What is the mean of the [latex]\chi^2[/latex]-distribution?
- What is the mode of the [latex]\chi^2[/latex]-distribution?
- What is the variance of the [latex]\chi^2[/latex]-distribution?
- Find the area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2=82[/latex].
- Find the area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2=14.9[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the left of [latex]\chi^2[/latex] is [latex]0.1183[/latex].
- Find the [latex]\chi^2[/latex]-score so that area under the [latex]\chi^2[/latex]-distribution to the right of [latex]\chi^2[/latex] is [latex]0.6977[/latex].
Click to see Answer
- [latex]12[/latex]
- [latex]10[/latex]
- [latex]24[/latex]
- [latex]0.2307[/latex]
- [latex]0.2470[/latex]
- [latex]6.62[/latex]
- [latex]9.06[/latex]
“10.2 The Chi Square Distribution” and “10.6 Exercises” from Introduction to Statistics by Valerie Watts is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.