"

2 Addition et multiplication de réels

\bullet    Deux opérations,  addition et multiplication, sont définies  sur   \mathbb{R}  et satisfont les lois de

    \begin{eqnarray*} &&\textbf{fermeture}  \qquad  \forall  u,v \in \mathbb{R} \qquad \Longrightarrow \qquad  u+v \in \mathbb{R}      \quad \hbox{ et } \quad u v \in \mathbb{R} \\ \\ &&\textbf{commutativité}  \qquad  \forall  u,v \in \mathbb{R} \qquad \Longrightarrow \qquad  u+v= v+ u       \quad \hbox{ et } \quad u v= v u \\ \\ &&\textbf{associativité}  \qquad  \forall  u,v, w \in \mathbb{R} \qquad \Longrightarrow \qquad  (u+v)+w=  u + (v+w)       \quad \hbox{ et } \quad (u v) w = u (v w) \\ \\ &&\textbf{distributivité}  \qquad  \forall  u,v, w \in \mathbb{R} \qquad \Longrightarrow \qquad  u (v+ w)=  u v + u w        \quad \hbox{ et } \quad (u+ v) w =  u w +  v w \\ \\ &&\textbf{élément neutre}  \qquad  \forall  u\in  \mathbb{R} \quad \Longrightarrow \quad  u+0 = 0+ u=u      \quad \hbox{ et } \quad 1. u = u. 1 = u \\ \\ &&\textbf{inverse}   \qquad * \quad  \forall  u\in \mathbb{R}   \quad\exists\,\, -u\in  \mathbb{R}   \quad \hbox{ tel que   }\quad  u+(-u) = (-u)+ u=0 \\ \\ &&\qquad \qquad  \qquad  *\quad  \forall  u\in \mathbb{R}\setminus \{0\}   \quad\exists\,\, u^{-1}\in  \mathbb{R}    \quad \hbox{tel que  }\quad  u^{-1}. u = u. u^{-1} = 1\\ \\ &&\qquad\qquad\qquad - u \quad \hbox{ est l'opposé de   } u ,   \qquad \qquad  u^{-1} \quad \hbox{ est l'inverse de } u.\end{eqnarray*}

\bullet  Les  propriétés suivantes sont vraies pour tout     u,\, v,\, w\in \mathbb{R}

    \begin{eqnarray*} &&  \quad v+ u =  v+w \qquad\Longrightarrow\qquad  u=  w  \qquad \hbox{(simplification)} \\ \\ &&  \quad \hbox{L'équation }  \quad x+ v= u \quad  \hbox{a l'unique  solution }  \quad x= u-v \\ \\ &&  \quad 0 . v = v. 0 =  0 \qquad \qquad \qquad \qquad \\ \\ && \quad (-1) \,v = - v \\ \\ &&  \quad  u. v =0 \qquad\Longrightarrow\qquad u= 0  \qquad \hbox{ ou } \qquad  v=0 \end{eqnarray*}

\bullet  L’opération de  soustraction  est définie par  :  \qquad u-v = u+ (-v)

\bullet  L’opération de  division est définie par  :       \qquad\displaystyle{\frac{u}{v}= u \div v = u. v^{-1}}  et satisfait

    \[ -\frac{u}{v} =  \frac{-u}{v}=\frac{u}{-v} = - \frac{-u}{-v}\qquad \qquad  \qquad \qquad  \qquad \frac{-u}{-v}= \frac{u}{v}   \]

    \[ \frac{u}{v}= \frac{s}{t} \qquad \Longleftrightarrow\qquad u t = v s   \qquad\qquad \qquad\qquad  \qquad \frac{u}{v}= \frac{ku}{kv}\qquad \forall k \in \mathbb{R}\setminus\{0\}\]

 

 

Voir la Vidéo


Voir sur YouTube

 

Afficher les  Exemples

 

Exercice 1

Afficher/Masquer Solution.

i) \quad On a

\displaystyle{\Big( {3} + \frac{{1}}{{5}} \Big) \Big( {2} - \frac{{5}}{{3}}\Big) = ({3})({2}) - \frac{ ({3}). ({5}) }{{3}} +\frac{({1})({2}) }{{5}} -\frac{({1})({5}) }{({5})({{3}})} }

\displaystyle{= \frac{1}{ ({5}) ({3}) } \Big[ ({3})({2}) ({5})({3}) - ({3}). ({5}).({5}) + ({1})({2}) ({3}) - ({1})({5}) \Big] =\frac{{16}}{{15}} }.

 

ii) \quad On a

\displaystyle{ \Big( \frac{{2}}{{3}} - \frac{{1}}{{6}}\Big) \Big( \frac{{2}}{{3}} + \frac{{1}}{{6}} \Big) = (\frac{ {2} }{ {3} } )^2 - (\frac{ {1} }{ {6} } )^2 = \frac{({2})^2}{({3})^2} - \frac{({1})^2}{({6})^2} = \frac{({2})^2({6})^2 - ({3})^2 ({1})^2 }{({3})^2 ({6})^2} = \frac{{135}}{{324}} }.

 

iii) \quad On a

\displaystyle{ \frac{{4}}{{5}} \Big(\frac{{3}}{{4}} - \frac{{1}}{{3}} \Big) = \frac{{4}}{{5}} .\frac{({3})({3}) - ({4}) ({1}) }{({4}) ({3})} =\frac{ {4}(({3})({3}) - ({4}) ({1}) )}{({5})({4}) ({3})}=\frac{{20} }{{60}} }.

 

Exercice 2

Afficher/Masquer Solution.

i) \quad Contre-exemple:

2 \in \mathbb{N}  et 5 \in \mathbb{N}, mais  2- 5= - 3 \not\in \mathbb{N}.

2 \in \mathbb{N},  mais 2- 2= 0\not\in \mathbb{N}.

 

ii) \quad Contre-exemple:

\sqrt{2} \in \mathbb{R}\setminus \mathbb{Q} mais \sqrt{2} . \sqrt{2} = 2 \not\in \mathbb{R}\setminus \mathbb{Q} .

 

iii) \quad Soienta\in \mathbb{Q} et b\in \mathbb{Q}. On a

a= \frac{m}{n} , \quad \quad b=\frac{k}{l}  avec  m, n, k, l \in \mathbb{Z}  et  n, \, l \not= 0.

Alors

a. b = \frac{m}{n} . \frac{k}{l} = \frac{m k}{n l} \in \mathbb{Q}

car  m k \in\mathbb{Z}  et  n l \in\mathbb{Z} avec n. l \not= 0.

 

Exercice 3

Afficher/Masquer Solution.

i) \quad On a

\displaystyle{ \frac{ \frac{1}{{7}} }{ \frac{1}{{2}} + \frac{1}{{3}} } = \frac{ \frac{1}{{7}} }{ \frac{{2}+{3}}{({2}) ({3})} }=\frac{1}{{7}}. \frac{({2}) ({3})}{{2}+{3}}= \frac{({2}) ({3})}{({7})( {2}+{3})} =\frac{{6}}{{35}} }.

ii) \quad On a

\displaystyle{ \frac{ \frac{1}{{6}}  + \frac{1}{{3}} }{  \frac{1}{{4}}  + \frac{2}{5} } = \frac{5({4}) ({3}+ {6}) }{ ({6}) ({3}) (5 + 2 ({4}) ) } = \frac{{180}}{{234}} }.

iii) \quad  On a

  \displaystyle{ \frac{ 2}{\frac{1}{{2}} }   -    \frac{\frac{2}{{8}}}{2} } = 2 ( {2}) - \frac{1}{{8}} = \frac{2 ({2}) ({8}) -1 }{ {8}} = \frac{{31}}{{8}} } .