Quay lại ví dụ này, giả nghịch đảo của ma trận
\begin{equation*}A = \left( \begin{array}{ccccc} 1 & 0 & 0 & 0 & 2 \\0 & 0 & 3 & 0 & 0 \\0 & 0 & 0 & 0 & 0 \\0 & 4 & 0 & 0 & 0 \end{array} \right).\end{equation*}
Có thể được tính thông qua phép phân tích SVD: \( A = U \tilde{S} V^T \), với
\begin{align*} U &= \left( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 &-1 \\ 1 & 0 & 0 & 0 \end{array} \right) , & \tilde{S} &= \left( \begin{array}{ccccc} 4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 &\sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) , & V^T &= \left( \begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 &\sqrt{0.2} \end{array} \right) , \end{align*}
như sau.
Đầu tiên ta nghịch đảo \( \tilde{S} \), chỉ đơn giản là “nghịch đảo những gì có thể nghịch đảo được” và giữ nguyên các giá trị không. Ta thu được
\begin{equation*}\tilde{S}^\dagger = \left( \begin{array}{ccccc} 1/4 & 0 & 0 & 0 & 0 \\0 & 1/3 & 0 & 0 & 0 \\0 & 0 &1/\sqrt{5} & 0 & 0 \\0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right).\end{equation*}
Sau đó, giả nghịch đảo được thu được bằng cách hoán đổi vai trò của \( U \) và \( V \) trong phép phân tích SVD:
\begin{equation*}A^\dagger = V \tilde{S}^\dagger U^T = \left( \begin{array}{ccccc} 0.2000 & 0 & 0 & 0 \\0 & 0 & 0 & 0.2500 \\0 & 0.3333 & 0 & 0 \\0 & 0 & 0 & 0 \\ 0.4000 & 0 & 0 & 0 \end{array} \right).\end{equation*}
Xem thêm: ví du.