Chapter 14

Simplified Models of Individual
Neurons

In the previous thirteen chapters, we meet and described, sometimes in excruciating detail,
the constitutive elements making up the neuronal hardware: dendrites, synapses, voltage-
dependent conductances, axons, spines, calcium and other second messengers. We saw how,
different from electronic circuits in which only very few levels of organization exist, the
nervous systems has many, tightly interlocking levels of organization that co-depend on each
other in crucial ways. It is now time to put some of these elements together into a functioning
whole, a single nerve cell. With such a single nerve cell model in hand, we can ask functional
questions, such as at what time scale does it operates, what sort of operations can it carry
out and how good is it at encoding information.

We begin this Herculean task by (i) completely neglecting the dendritic tree and (ii) by
replacing the conductance-based description of the spiking process (e.g. the Hodgkin-Huxley
equations) by one of two canonical descriptions. These two steps dramatically reduce the
complexity of the problem of characterizing the electrical behavior of neurons; instead of
having to solve coupled, nonlinear partial differential equations, we are left with a single
ordinary differential equation. Such simplifications allow us to formally treat networks of
large numbers of interconnected neurons, as exemplified in the neural network literature,
and to simulate their dynamics. Understanding any complex system always entails choosing
a level of description that retains key properties of the system while removing nonessential
ones for the purpose at hand. The study of brains is no exception to this.

Numerous simplified single cell models have been proposed over the years, yet most of
them can be reduced to just one of two forms. These can be distinguished by the form of
their output: spike or pulse models generate discrete, all-or-none impulses. Their output
over time can be treated as a series of delta functions 3°; 0(¢ — ¢;). Implicitly this assumes
that no information is contained in the spike height or width. The original model of a neuron
in McCulloch and Pitts (1943) as well as the venerable integrate-and-fire unit are instances
of pulse models. In firing rate neurons, the output is a continuous firing rate, assumed to be
a positive, bounded and stationary function of the input. Examples of these are the units
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at the heart of Hopfield’s (1984) associative memory network.

Yet before we can delve into more detail we need to introduce the deep issue of the proper
output representation of a spiking cell that directly relates to the question of the neuronal
code used to transmit information among neurons.

14.1 Rate Codes, Temporal Coding and All of That

How the neuronal output is represented, as a series of discrete pulses or as a continuous firing
rate, relates to the question of the code used by the nervous system to transmit information
between cells. So let us briefly digress and talk about neuronal codes.

In a typical physiological experiment, the same stimulus is presented multiple times to a
neuron and its response is recorded (Fig. 14.1). One immediately notices that the detailed
response of the cell changes from trial to trial; characterizing and analyzing stochastic com-
ponent of the neuronal response is important enough that we dedicate the entire following
chapter to it.

Given the pulse-like nature of spike trains, the standard procedure to quantify the neu-
ronal response is to count how many spikes arrived within some sampling window At and to
divide this number by the number of presentations. This yields the conditional probability
that a spike occurred between ¢ and t + At given some particular stimulus.

In the limit of very small sampling windows, such that the probability for more than one
spike occurring within At is vanishingly small (usually 1 msec), the probability of spiking
is given by f(t)dt, where f(t) is the instantaneous firing rate of the neuron (in units of
spikes/time). f(t) as a function of time after the onset of a stimulus is known as the post-
stimulus time histogram (PSTH; Fig. 14.1). Because of the stochastic nature of the neuronal
response f(t) will, in general, not become arbitrary sharp as At goes to zero but retains a
considerable degree of “fuzziness” (but see Fig. 15.10).

It is important to realize the artificial nature of this construct. The nervous system has
to make a decision based on a single spike train and not on the average of tens or more of
spike trains. A visual neuron in the fly does not have the opportunity to see the hand that
is about to swat it approach ten times before it makes the decision to initiate an escape
response! A neuron can only observe the 3; 6(¢ — ¢;) from its presynaptic partners, and not
f(2).

Under certain conditions this might be different. If a cell, say in cortex, has access to the
spiking output of many cells with the same receptive field properties, the temporal average
of the single presynaptic neuron can be replaced by an ensemble average over a population
of neurons, thereby approximating f(¢). In many cases though population rate coding cannot
occur for lack of a sufficient large population to average over. In the insect, a very small
number of clearly identifiable neurons code for particular features of the sensory input and
no ensemble averaging occurs.

Given the stochastic nature of spike trains, a common assumption is that the averaged
firing rate of a neuron constitutes the primary variable relating neuronal response to sensory
experience (Adrian and Zotterman, 1926; Adrian, 1932; Lettvin, Maturana, McCulloch and
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Figure 14.1: WHAT 1S THE FIRING RATE
The definition of the firing rate. Starting point are numerous trials in which the same stimulus
is repeatedly presented to the animal and the spikes generated by some cell recorded. These are
shown in the raster diagram at the top taken from a cell in cortical area V4 in the awake mon-
key. The stimulus—a grating—is flashed on at 0 and lasted until 1500 msec. 23 of these trials
are averaged, smoothed with a Gaussian of 2 msec standard deviation ¢ and normalized. This
averaging window is so small that it effectively defines the instantaneous firing rate f(¢). Due
to the stochastic nature of neuronal firing these post-stimulus time histogram (PSTH) do not be-
come arbitrarily sharp but remain fuzzy. The two lower plots illustrate an average firing rate
(f(t)) obtained from the raster diagrams using Gaussian smoothing with ¢ =20 and 200 msec.
In many experiments only the average number of spikes triggered during each trial, correspond-
ing to 0 — oo (see arrow at 19.5 Hz) is used to relate the cellular response to the behavior
of the animal. It is important to realize that a single neuron only sees spike trains, and not
a smoothly varying firing rate. ;From D. Leopold and N. Logothetis, personal communication.
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Pitts, 1959; Barlow, 1972). This belief is supported by the existence of a quantitative
relationship between the averaged firing rate of single cortical neurons and psychophysical
judgments made by a monkey. That is, the animal’s behavior in a visual discrimination task
can be statistically predicted by counting spikes over a long interval (typically one second or
more) in a single neuron in visual cortex (Werner and Mountcastle, 1963; Barlow, Kaushal,
Hawken and Parker 1987; Newsome, Britten and Movshon, 1989; Vogels and Orban, 1990;
Zohary, Hillman and Hochstein, 1990; Britten, Shadlen, Newsome and Movshon, 1992).

In these experiments, the rate is estimated by averaging over a window that is large
compared to the time in which the sensory stimulus itself changes:

UOER Wy A ST (141)

where the first sum j is executed over the n identical trials and the second sum over all n;
spikes at time ¢;; during the j-th trial. Notice that the ¢ terms have the dimension of spikes
per dt, so that the average (f(¢))! has the correct units associated with a rate. Instead of a
rectangular window, a frequent alternative is to smooth using a Gaussian convolution kernel
with standard deviation o:

(f(t) = L n U\/ﬂ/ﬁo Mﬂiét—tl] , (14.2)

(Fig. 14.1). Because of this success in linking (f(¢)) with behavior, it has been assumed by
some that only the mean rate, averaged over a significant fraction of a second or longer, is
the relevant code in the nervous system and that the detailed time course of spikes is not.

The past decade has witnessed a revival in the question to what extent an average
rate coding neglects information (for an expose of these ideas, see the superb textbook
by Rieke, Warland, van Steveninck and Bialek, 1996). On the basis of signal-processing
and information-theoretical approaches, we now know that individual motion-selective cells
in the fly (Bialek, Rieke, van Steveninck and Warland, 1991), single afferent axons in the
auditory system in the bullfrog (Rieke, Warland and Bialek, 1993) and in the electrosensory
system in weakly electric fish (Wessel, Koch and Gabbiani, 1996) can carry between 1 and
3 bits of sensory information per output spike, amounting to rates of up to 300 bits per
second. This information is encoded using the instantaneous rate with a resolution of 5 msec
or less. And the elegant experiments of Markram and his colleagues (1997), demonstrating
the effect a short delay between a presynaptic and a postsynaptic spike arriving at a synapse
can have on its “ weight” (section 13.6.2), provides a biophysical rationale for why timing
at the 10 msec level is crucial for synaptic plasticity.

We summarize this vast body of work (see Rieke et al., 1996) by concluding that in many
instances (f(t))—averaged over a 5 to 10 msec time frame—appears to be the relevant code
used to transmit information:

'Sometimes also written as (f(t))r to express its dependency on the size of the averaging window.
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More complex neuronal codes do exist and are frequently referred to under the catch-all
term of temporal coding (for an exhaustive listing of possible codes, see Perkel and Bullock,
1968). However, because of its implication that rate codes do not preserve detail timing
information, we prefer a term coined by Larry Abbott (personal communication) correlation
coding.

In an instantaneous firing rate code, the generation of each spike does not depend on
other spikes in the trains (neglecting the refractory period and bursting). In a correlation
code this assumption is abandoned in favor of coupling among pairs, triplets or higher-order
groupings of spikes.

To give one example of a correlation code, let f(¢) in response to some stimulus be a
maintained response. We assume that this cell is very noisy with distinct spike patterns
on individual trials. Averaging over them all leads to a flat response of amplitude f.. In a
rate code, f. is the only information available to a postsynaptic neuron. Closer inspection
of the microstructure of spiking reveals that the intervals between consecutive spikes are not
independent of each other but that two short spike intervals are always followed by a long
one. Any code that fails to exploits these higher-order correlations amongst four consecutive
spikes would miss something. For experimental evidence of such codes see (Segundo, Moore,
Stensaas and Bullock, 1963; Chung, Raymond and Lettvin, 1970; Eskandar, Richmond and
Optican, 1992; Richmond and Optican, 1992; Optican and Richmond, 1987).

A generic problem with the assumption of correlation codes is the question of decoding. It
is unclear what sort of biophysical mechanisms are required to exploit the information hidden
in such correlations among spikes. They might be prohibitively complicated to implement
at the membrane level.

So far we have said little about population coding. Once again, one can distinguish two
broad types of codes, correlated one and non-correlated ones (Abbott, 1994). The latter are
straightforward: here the information from numerous neurons is combined into a population
code but without taking account of any correlations among neurons (Knight, 1972a,b). There
is plenty of good evidence for such codes in a great variety of different sensory and motor
systems, ranging from the four cricket cercal interneurons encoding the direction the wind is
blowing from (Theunissen and Miller, 1991) to the larger ensembles encoding the direction
of sound in the barn owl (Knudsen, du Lac and Esterly, 1987; Konishi, 1992) and eye
movements in the mammalian superior colliculus (Lee, Rohrer and Sparks, 1988) to the
posterior parietal cortex in the monkey encoding our representation of space (Pouget and
Sejnowski, 1997).

Correlation population codes exploit the exact temporal relationships among streams of
action potentials. One way to discover such codes is to record from two or more neurons
simultaneously and to measure their cross-correlation function. For instance, it may be that
two presynaptic neurons always generate spikes within one or two millisecond of each other.
Much technological advance has occurred in this area in recent years, so that recordings from
multi-unit recordings have now become routine.

In a variety of sensory systems in both invertebrates and vertebrates, physiological ev-
idence indicates that cross-correlations among groups of cells appears to encode various
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stimulus features (Freeman, 1975; Abeles, 1982, 1990; Strehler and Lestienne, 1986; Eck-
horn, Bauer, Jordan, Brosch, Kruse, Munk and Reitboeck, 1988; Gray, Konig, Engel and
Singer, 1989; Bialek, Rieke, van Steveninck and Warland, 1991; Eskandar, Richmond and
Optican, 1992; Konishi, 1992; Singer and Gray, 1995; Decharms and Merzenich, 1996; Wehr
and Laurent, 1996). The best evidence to date linking neuronal synchronization directly
to behavior comes from the bee’s olfactory system (Stopfer, Bhagavan, Smith and Laurent,
1997). When pharmacological agents were used to block cellular synchronization—without
interrupting neuronal activity per se—fine sensory discrimination was disrupted.

Much theoretical work using pulse-coded neural networks has focused on the idea that
spike coincidence across neurons encodes information (Sejnowski, 1977a; Abeles, 1982, 1990;
Amit and Tsodyks, 1991; Koch and Schuster, 1992; Griniasty, Tsodyks and Amit, 1993;
Abbott and van Vreeswijk, 1993; Zipser, Kehoe, Littlewort and Fuster, 1993; Softky, 1995;
Hopfield, 1995; Maass, 1996). Indeed, it has been proposed that temporal correlation among
groups of neurons is a crucial signal for a number of perceptual processes, including figure-
ground segregation and the binding of different attributes of an object into a coherent,
unitary percept (the so-called binding problem; Milner, 1974; von der Malsburg, 1981; von
der Malsburg and Schneider, 1986), selective visual attention (Niebur and Koch, 1994), and
even the neuronal basis of awareness (Crick and Koch, 1990; for a review see Koch, 1993).

.From our point of view as biophysicists, a correlation population code based on coinci-
dence detection has the significant advantages that it is straightforward to implement at the
membrane level (witness Fig. 21.2).

The question of rate versus correlation coding remains with us. Yet this stark either-or
dichotomy is not very useful. Clearly, the timing of spikes, at least at the 10 msec level, is
important. And in some systems, detailed information across groups of cells will also prove
to be of relevance, although for which properties and at what time scale is an open question.

It therefore behooves us to study how accurately and reliably neurons can generate in-
dividual action potentials and how robust these are to noise. We here lay the groundwork
by introducing pulse neurons as well as firing rate models and describing their basic proper-
ties. We believe that such single cell models represent the most reasonable tradeoff between
simplicity and faithfulness to key neuronal attributes. The following chapter will deepen our
discussion of stochastic aspects of neuronal firing. We will also discuss firing rate models.

14.2 Integrate-and-Fire Models

We turn to a very simple, but quite powerful, model of a spiking cell with a long and
distinguished history, first investigated by Lapicque (1907, 1926) before anything specific
was known about the mechanisms underlying impulse generation. In its vanilla flavored
version, it is known as the integrate-and-fire model (Stein, 1967a,b; Knight, 1972a; Jack et
al., 1975; Tuckwell, 1988b; frequently referred to as woltage threshold or Lapicque’s model
in the older literature). In its simplicity it rivals physics’ linear oscillator model, yet it does
encapture the two key aspects of neuronal excitability: a passive, integrating subthreshold
domain and the generation of stereotypical impulses once a threshold has been exceeded.
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Figure 14.2: INTEGRATE-AND-FIRE MODELS
Three basic variants of integrate-and-fire units. Common to all are passive integration within a
single compartment for the subthreshold domain and a nonlinear element, spike generation ac-
complished with a voltage threshold Vy;,. Whenever the membrane potential V(¢) reaches Vi,
a pulse is generated and the unit is short-circuited. For a duration t,.; following spike gen-
eration, any input I(¢) is shunted to ground (corresponding to an absolute refractory period).
The perfect or non-leaky integrate-and-fire model contains but a capacitance. The leaky or for-
getful integrate-and-fire unit accounts for the decay of the membrane potential by an additional
component, a leak resistance R. The adapting integrate-and-fire unit with six free parameters
(egs. 14.12 and 13) shows firing rate adaptation via the introduction of gggep:, corresponding to an
calcium-dependent potassium conductance (in addition to the absolute refractory period). Each
spike increments the amplitude of the conductance; its value decays exponentially between spikes.

The non-leaky or perfect integrate-and-fire unit consists but of a single capacitance for
integrating the charge delivered by synaptic input in addition to a fixed and stationary
voltage threshold Vj, for spike initiation (Fig. 14.2). The leaky or forgetful integrate-and-fire



326 Christof Koch, Sep-23-97

model includes a resistance, accounting for leakage currents through the membrane. While
integrate-and-fire models don’t incorporate the detailed time course of the action potential,
the effect of adaptation can be incorporated; indeed, the current-frequency relationship of
such an integrate-and-fire cell with a handful of parameters can be very close to that of a
much more complex, conductance-based cell model.

14.2.1 The Perfect or Non-Leaky Integrate-and-Fire Unit

We will be considering a number of variants of integrate-and-fire “units”. All are character-
ized by a subthreshold domain of operation and a voltage threshold V};, for spike generation.
The perfect integrate-and-fire unit deals with subthreshold integration via a single capaci-
tance C'. While unphysiological, it is mathematical tractable, which is why it is frequently
invoked for pedagogical purposes. For the sake of mathematical convenience we assume
the input to be a current I(t), arising either from synaptic input or from an intracellular
electrode. The generalization to a conductance based input is straightforward.

The voltage trajectory of the perfect integrator is governed by the first-order differential
equation:
dV (t)

o
dt

=1(t). (14.3)
Together with an initial condition eq. 14.3 specifies the subthreshold time course of the
membrane potential.

Once the potential reaches Vj;,, a pulse is triggered and the charge that has accumulated
on the capacitance is shunted to zero (through the closed switch in Fig. 14.2). This would
normally be accomplished by the various conductances underlying spiking. Sweeping the
charge to “ground” has the effect of instantaneously resetting V(¢) to zero. Because the
model has no pretense of mimicking the currents involved in shaping the action potential,
spike generation itself is not part of the model. Formally, we model the action potential by
assuming that at the instant ¢ at which V' (#') = Vj, (or the first time V (¢) exceeds Vj, for
models with instantaneously rising EPSPs) an output pulse, described by a delta function
d(t—t'), is generated. The successive times, t;, of spike occurrence are determined recursively
from the equation

t;
/t Y Iydt = CVy, . (14.4)
As discussed in section 6.4, a canonical way in which experimentalists characterize a cell’s
behavior is by determining its discharge, frequency-current or f-I curve, the relationship
between the amplitude of an injected current step and the average firing frequency (defined
over an interval longer than the interspike interval; as in eq. 14.4, /f) is computed as the
inverse of the interspike interval).

In response to a maintained current, the membrane potential will charge up the capac-

itance until V}, is reached and V' is reset to zero. The larger the current, the smaller the
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intervals between spikes and the higher the firing rate according to

B I
OV

(f) (14.5)

Three features are worthwhile here. (i) The firing rate is linearly related to the input current
(Fig. 14.3B). (ii) Arbitrarily small input currents will eventually lead to a spike, since no
input is forgotten. (iii) The output spike train is perfectly regular. Of course, real neurons
rarely, if ever, respond to a sustained current injection with a regular discharge of spikes but
instead show substantial variability in the exact timing of the spikes. This is particularly
true of neurons recorded in vivo (Holt, Softky, Koch and Douglas, 1996). The following
chapter will deal with this situation.

The dynamic firing range of nerve cells is limited by the fact that the sodium current
responsible for spiking must recover from inactivation. Potassium currents furthermore limit
the peak firing range. The effect of a refractory period is mimicked by postulating that
following spike generation, the membrane potential is set to zero for a fixed duration ?,.¢;
any current arriving within this window is shunted away. This introduces a non-linear
saturation into the f-I curve of the perfect integrator,

I
B C‘/th + trefI '

(f) (14.6)

The output of such an integrator to an arbitrary input current consists of a series of
impulses, -, 6(t — t;), all of which are spaced at least ¢, apart.

14.2.2 The Forgetful or Leaky Integrate-and-Fire Unit

The model considered so far will sum linearly multiple subthreshold inputs irrespectively of
their temporal relationship because no account is made of a leak. A more realistic behavior
is obtained by incorporating a leak resistance into the subthreshold domain (Fig. 14.2),
dv(t) V(t)

+ 2 . (14.7)

Cdt R

Having first meet this equation in Chapter 1 (eq. 1.6), we know that the evolution of the sub-
threshold voltage is completely characterized by convolving I(¢) with the associated Green’s
function, e /™ (with 7 = RC). The time-course of the membrane potential of the leaky
integrate-and-fire unit to a step of constant current I, switched on at £ =0 and remaining
on, can be obtained by solving eq. 14.7,

V(t)=TR(1—e ")+ V(t=0)e . (14.8)

The membrane charges exponentially up to its stationary value V = I R.
The integrator model will only follow this equation as long as the voltage remains below
Vin, since upon reaching the threshold a spike is initiated and the voltage is reset to zero
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(Fig. 14.3A). The minimal sustained current necessary to trigger an action potential, that is
the threshold current, is

In =5 (14.9)

For any current I larger than I;,, an output impulse will be generated at time 7},, such that
IR(1 — exp(—Ty, /7)) = Vi, holds. Inverting this relationship yields the time to spike as

Ty, = —7log (1 - }/—2) . (14.10)
Solving this equation for the minimal duration needed for a sustained current of a fixed
amplitude to generate a spike yields what is known as strength-duration curve (Jack et
al., 1975; Noble and Stein, 1966). Since the voltage is reset following an impulse and if we
assume that the input current persists, the membrane will again charge up to the threshold,
triggering the next spike T}, + t,.s later (Fig. 14.3A).

If we take proper account of the refractory period by assuming that for ¢,.; following
each spike, all input current is simply lost (due to the shunting effect of the conductances

underlying the afterhyperpolarization), the continuous firing rate as a function of the injected
current will be (Fig. 14.3B)

1 1
_T:‘,h—i_tref _tref—TIOg(l—%) .

(f) (14.11)

For currents below I;; no spike is triggered and at I = I, the slope of the f-I curve is
infinite. For large currents, the firing rate saturates at the inverse of the refractory period
(Fig. 14.3B). In the absence of a refractory period, the slope of the f-I curve levels off to a
constant value of 1/(V;,C), identical to the slope of the non-leaky unit?. Its steepness can
be increased by reducing the threshold voltage or by decreasing the membrane capacitance.
Due to the refractory period, the f-I curve gently bends over to level off at f,,0, = 1/t,cs for
(unphysiological) high current levels.

14.2.3 Other Variants

Besides the generic version of the integrate-and-fire model discussed above, a number of
variants are in usage.

e In order to better account for the 50 to 100 msec time-course of adaptation, Wehmeier
and colleagues (1989) introduced a purely time-dependent shunting conductance gugapt
(with a reversal potential equal to the resting potential, here assumed zero). Each spike
increases this conductance by a fixed amount Gjy,.; between spikes, g,qqpr decreases
exponentially with a time constant 7,44y to zero. Such an effective calcium-dependent

2This can be seen upon developing the log term in eq. 14.11 into a Taylor series, with log(1+z) ~ z—z%/2
for |z| < 1.
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Figure 14.3: SPIKING IN A LEAKY INTEGRATE-AND-FIRE MODEL
The average firing frequency, determined as the inverse of the interspike interval, as a function of
the amplitude of a maintained current input, for the leaky integrate-and-fire units of Fig. 14.2. (A)
Exemplar trace of such a unit receiving a current step with I =0.5 nA. Before the membrane po-
tential has time to reach equilibrium, the unit spikes. V;;, = 16.4 mV,C = 0.20TnF, R = 38.3 M2
and t..; = 2.68 msec. (B) The f-I or discharge curve curve for the same leaky unit with refrac-
tory period (eq. 14.11). At threshold, Iy, = Vi, /R, the slope is infinite. The firing rate saturates
at 1/t,.r. For comparison, the f-I curve of the non-leaky unit without refractory period with
constant slope 1/(Vy,C), is superimposed. (C) An adapting conductance (with Gj,. = 20.4 nS
and Togepr = 52.3 msec) is added to the leaky integrate-and-fire unit from the upper panel (see
Fig. 14.2) and the resulting f-I curve is compared against the discharge curve of the biophysical
detailed compartmental model of the layer 5 pyramidal cell (Fig. 17.10). The degree of matching
between the simple and the very complex models are quite remarkable and support our contention
that suitable modified integrate-and-fire models do mimic numerous aspects of the behavior of neu-
rons. Adaptation is already evident when considering the first interspike interval (between the first
and the second spike); adaptation linearizes the very steep f-I curve around Iy, (compare with B).
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potassium conductance imitates both the absolute as well as the relative refractory
period following spike initiation. We will refer to such a unit as an adapting integrate-
and-fire model (Fig. 14.2C). Note that a refractory period ¢, is still necessary in order
to mimic the very short-term aspect of adaptation. In the subthreshold domain, this
unit is described by

av V(1 + RYadapt)

Cor = - 7 +1 (14.12)
daa
Tadapt gdipt =  —Yadapt - (1413)

If V' reaches Vi), at time ¢, a spike is generated at this point in time and gagqp:(t')
is incremented by G;,.. This model is completely characterized by six parameters:
‘/tha C) Ra trefa Ginc and Tadapt -

An alternative to this output-dependent membrane conductance is to increase the
voltage threshold following each spike in a deterministic manner, for instance using
the rule

Vin(t) = Vino(1 + ae™ )/ Tadapt) | (14.14)

where ¢t — t' is the time from the last impulse, V}; ¢ the threshold in the absence of
any adaptation and « the maximal normalized voltage threshold (Calvin and Stevens,
1968; Holden, 1976).

In order to account for those neurons that do not show any profound afterhyperpolar-
ization following spiking, the membrane potential can be reset to a value closer to Vj,
(e.g. 20% of V3;) instead of zero. This is equivalent to resetting the potential to zero
but adding a constant current and can have a considerable effect on the jitter in pulse
timing (Troyer and Miller, 1996).

In a strategy to imitate the seemingly random nature of spike times, some authors resort
to drawing the voltage threshold from some probability density distribution (Holden,
1976; Gestri, Masterbroek and Zaagman, 1980). Yet in real neurons, the spiking mech-
anism itself appears to be quite reliable (Calvin and Stevens, 1968; Mainen and Se-
jnowski, 1995). In the case of the perfect integrator, a random threshold and constant
input can be shown to be equivalent to a random input and a constant threshold. Fre-
quently, the former situation is both mathematically and computationally easier to deal
with than the latter (for more details, see Gabbiani and Koch, 1997 and Appendix B).

What all of these models share is a mechanism for passive integration of synaptic inputs,

a voltage threshold for spike initiation and a lack of specific spiking currents.

In chapter 17 we will learn that an action potential in a full-blown model of a pyramidal

cell (with eight voltage-dependent conductances) is, indeed, generated whenever the somatic
membrane potential exceeds -49 mV. This is because the synaptic current flowing into the
soma—caused by rapid EPSPs on the time-scale of milliseconds—primarily charges up the
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capacitance. Relative to this rapid charging current, the ionic currents in the subthreshold
regime change on a much slower time-scale.

How well does this f-I curve compare against curves obtained from much more detailed
and sophisticated models? Presaging section 17.5, we plot the f-I curve of the layer 5 pyra-
midal cell, including the effect of firing rate adaptation in Fig. 14.3C. Notice the very low
slope of the f-I curve around threshold, in contrast to the infinite slope of the f-I curve of the
integrate-and-fire unit. If, an adapting conductance is incorporated into the leaky integrator
(egs. 14.12 and 13 and Fig. 14.2C), it is surprising how well this single cell model (with just
six degrees of freedom) resembles the much more detailed compartmental model based on
membrane conductances.

Due to the presence of the leak term, integrate-and-fire models have been difficult to fully
characterize analytically but have also been surprisingly successful in describing neuronal
excitability. They have been applied to model the firing behavior of numerous cell types:
neurons in the limulus eye (Knight, 1972b), o motoneurons (Calvin and Stevens, 1968),
neurons in the visual system of the housefly (Gestri, Masterbroek and Zaagman, 1980),
cortical cells (Softky and Koch, 1993; Troyer and Miller, 1996) and others.

While singing the praise of integrator models, it must be pointed out that many cells do
not behave like integrate-and-fire units. For instance, cerebellar Purkinje cells (Jaeger, De
Schutter and Bower, 1997) or the many types of oscillating neurons that constitute the cen-
tral pattern generators found throughout the animal kingdom (Marder and Calabrese, 1996),
have such strong inherent nonlinearities, generated by powerful intrinsic currents, that any
attempts to directly map their behavior onto this class of models would fail miserably. Ap-
proximations are possible, though. For instance, bursting (Chapter 16) could be treated by
letting the rapid Na* spikes be handled by the integrate-and-fire threshold mechanism. The
slow dynamics governing when the fast sequences of spikes are generated by incorporating
voltage-dependent conductances into the unit.

14.2.4 The Response Time of Integrate-and-Fire Units

When a spiking, non-adapting membrane (such as the squid axon) receives a sustained,
suprathreshold current input, its membrane potential never reaches an equilibrium but moves
along a limit cycle. That is, it undergoes periodic changes in its state variables (chapter 7).
When the integrate-and-fire neuron spikes, and the state variable is reset, it loses memory of
the previous input current, and begins to respond to the new current by charging toward the
threshold. It follows from these considerations that if there is a step change in current, the
integrate-and-fire neuron must converge to its limit cycle by the end of the first interspike
interval after the change, because everything during this first interval is exactly the same as
during subsequent intervals.

Figure 14.4 compares the step response of an integrate-and-fire unit, a compartmental
model of a cortical pyramidal neuron, an experimental record derived from a neuron in cat
visual cortex and a mean-rate neuron. The first interspike interval already reflects the new
firing rate— the convergence occurs on as short a time interval as can be defined (i.e. the
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Figure 14.4: SPIKING CELLS
Sample spike rasters in response to a step current injection. (A) Leaky integrate-and-fire unit
with refractory period spiking in response to a current step of 1.6 nA (for parameters, see leg-
end to Fig. 14.3A). The arrows indicate the time at which the current injection commenced. (B)
Somatic membrane potential in the layer 5 pyramidal cell model in response to a 1.5 nA cur-
rent input. (C) Response of a cell in primary visual cortex of the anesthetized adult cat to a
0.6 nA current injection (from Ahmed et al., 1993). The firing rate does not increase gradually;
the effect of the change in current is fully visible in the first interspike interval. (D) The out-
put of a non-adapting firing rate model with 7 = 20 msec. In the linear regime of the cell’s
f-I curve, the firing rate can be considered to be a low-pass filtered version of the step input.

interspike interval). The inclusion of adaptation currents (Fig. 14.3B) does not substantially
affect this analysis. Cortical cells (Fig. 14.4C) also reach their maximum firing rate by the
first interspike interval. Thereafter, the firing rate decreases slowly due to the temporal
dynamics of adaptation.

Just because the subthreshold dynamics is governed by 7 = RC' does not imply that
the neuron must respond to a suprathreshold input with the same dynamics. Returning to
expression 14.10 for the time-to-spike, T}, we notice that the larger the injected current, the
sooner the cell spikes (jump ahead to Fig. 14.5A). Furthermore, T}, actually decreases as
the input resistance, and therefore 7, increases (Fig. 14.5B). This can easily be explained by
recalling that T}, is the time it takes for the membrane potential to reach the fixed threshold
Vin. Increasing the input resistance will shorten this time, even if overall it would have taken
the membrane longer to reach its ultimate steady-state value RI (which is never reached
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since a spike is triggered and the membrane potential reset once V' hits V};,).
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Figure 14.5: INTEGRATE-AND-FIRE UNITS CAN RESPOND MUCH FASTER THAN 7
The membrane time constant 7 = RC of a leaky integrate-and-fire unit and the time, T}, it takes
such a unit, starting at V' =0, to reach Vj;, and spike (eq. 14.10). (A) As the amplitude of the
injected current increases, the unit can spike very rapidly. The true time to spike is < Ty, since
the unit’s initial state is usually V' > 0. The parameters are as in Fig. 14.3A. (B) The input
resistance R is varied over two orders of magnitude. As 7 diverges, T}, converges to C'Vjy, /I, the
time is takes for the voltage across a capacitance to reach V. While this may be counterintuitive,
it follows from the fact that T}, is the time it takes to reach a fixed threshold value, while 7 dic-

tates the approach toward a steady-state value beyond V. The injected current I =4.3 nA. All
else as in the upper panel. For small values of R, the current fails to reach I, and T}, diverges.
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14.3 Firing Rate Models

The potential in a continuous firing rate unit, such as those at the heart of most neural
networks, has the same dynamics as in the leaky integrate-and-fire unit, i.e.
dV (t) V(t)

O = == +1(1). (14.15)

A subtle but far-reaching difference is that the instantaneous output of this unit, f(¢), is a
continuous but nonlinear function of V'(¢):

f=gV). (14.16)

Most commonly ¢ is a sigmoidal function, that is a monotonic increasing, positive and
saturating function. A popular choice is

B 1
14 e 2V

i (14.17)

where (3 is some constant (Fig. 14.6). Other functions have also been used (e.g. tanh'V or
V?2). V is sometimes identified with the so-called generator potential, the somatic membrane
potential when the spikes are disabled (e.g. by blocking the fast sodium conductance). Under
certain conditions, the generator potential correlates well with the firing rate when spikes are
blocked (Katz, 1950; Granit, Kernell and Shortess, 1963; Stein, 1967a; Dodge, Knight and
Toyoda, 1968). If f is thought of as the firing rate of the unit, then the function g can be
identified with the f-I curve of the cell under investigation and can be directly fitted against
experimental data. Given the continuous and smooth nature of g, no true current threshold
exists.

An electronic circuit implementation of a rate neuron has been drawn in Fig. 14.6. Here
the ideal operational amplifier is assumed to draw no input current (i.e. it has an infinite
input impedance), converting the difference between V' and ground into the potential f =
g(V).

In this class of models the firing rate changes smoothly in response to a rapid change
in 7. For small steps in input current ¢g(V) is approximately linear. In the linear regime,
the firing rate is given by convolving the input current with a first-order low-pass filter with
time constant 7 = RC', and is therefore a smoothed version of the input.

14.3.1 Comparing the Dynamics of a Spiking Cell with a Firing
Rate Cell

As we mentioned above, the voltage in an integrate-and-fire unit in response to a sustained
suprathreshold input moves along a limit cycle. This is not true for the potential in a firing
rate model. V reaches its equilibrium value in a time dictated by 7; the firing rate follows
V' without further delay.
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Figure 14.6: A CONTINUOUS FIRING RATE SINGLE CELL MODEL
As in the integrate-and-fire models (Fig. 14.2), the input current in a firing rate neuron charges
up a RC element. The instantaneous firing rate is obtained by passing the membrane potential
V' through a smooth, stationary nonlinearity ¢g. In the circuit idiom used here, this nonlinear-
ity is implemented by an ideal operational amplifier. The associated adapted f-I curve, specified
by eq. 4.17 g(V)) = g(RI) is a continuous, positive and saturating function with no threshold.

If 7 is increased in either model by increasing the neuron input resistance R, the rate
of change of the subthreshold voltage also increases. This allows the spiking neuron to
reach threshold more quickly (Fig. 14.7). In contrast, it will take longer to reach 1-1/e of
the equilibrium voltage because the equilibrium voltage is also increased, implying that the
dynamics in the firing rate model slows down as 7 increases (Fig. 14.7). In the extreme
case, when 7 — oo and the leaky integrate-and-fire model converges to a perfect integrator
model, the firing rate model does not even asymptotically approach an equilibrium, while
the spiking unit settles into its steady-state limit cycle faster than it does for a finite 7.
Similarly, decreasing T will not make a spiking neuron respond faster.

A spiking mechanism can therefore speed up a neuron’s response to a step change in the
input. In a population of spiking cells with uniformly distributed initial conditions, there
will be cells whose T3, will be arbitrary close to zero. Knight (1972a) made this point,
proving rigorously that an infinite population of either perfect or leaky integrate-and-fire
units uniformly distributed in phase will respond instantaneously to any suprathreshold
stimulus. This is true for increases or decreases in input. In theory, how fast a neuron that
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receives input from such a population could detect a change in its inputs is limited only by
the number of statistically independent inputs (Panzeri, Biella, Rolls, Skaggs and Treves,
1996). This is unlike the response of one or even of a population of firing-rate neurons.
Because of the low-pass filtering stage, their firing rate cannot change instantaneously.
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Figure 14.7: RESPONSE TIME IN SPIKING AND FIRING RATE MODELS
Effect of changing the membrane time constant on (A) a non-spiking (or firing rate) neuron and
(B) on an integrate-and-fire neuron. The input current to the cell changes from zero to 0.85 nA at
time 0. Subthreshold parameters were the same in both panels (C' = 1 nF; R was varied from 20 M2
to infinity; no refractory period). The subthreshold voltage of the integrate-and-fire model (B) is
exactly the same as the non-spiking model (A) until the threshold Vy;, (dashed line in A) is crossed.
Increasing R increases the rate of change of voltage, but also increases the equilibrium voltage. Non-
spiking neurons therefore converge more slowly as the time constant increases. As 7 — oo (when the
leaky integrate-and-fire unit turns into a perfect one) the integrate-and-fire model responds earlier.
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It has been argued that the temporal dynamics of neurons embedded within a network is
primarily determined by the time course of the synaptic currents. This has as a consequence
that the subthreshold RC' time constant should more properly be replaced by one or more
synaptic time constants (e.g. Amit and Tsodyks, 1991; Amit and Brunel, 1993; Burkitt,
1994; Suarez, Koch and Douglas, 1995; Brunel, 1996). A very simple, yet physiological
correct way to express the firing rate is by

where hg is the steady-state f-I discharge curve of the cell and I(t) is the total current
flowing into the soma. This equation dispenses with the subthreshold voltage since it only
plays a very limited role for suprathreshold currents. The subthreshold domain will come
into play for inputs hovering just around threshold (e.g. the lower trace in Fig. 14.7B).

In order to turn this into a complete single cell model, two additional ingredients are
needed (Abbott, 1994).

(i) How to obtain the current I(¢)? The simplest manner is to use the standard neural
network “linear sum over all inputs” formulation (see eq. 14.20). We can be more
accurate and incorporate the nonlinear effects occurring in the dendritic tree (synaptic
interaction, synaptic saturation and so on). This is discussed at length in section 18.4.
Almost any degree of biophysical complexity can be accounted for. What can’t be
readily included are back-propagating action potentials and the like (chapter 19) since
we assume that the coupling between dendrites and the spike-initiation zone is one-way
only.

(ii) What is the relationship between the instantaneous firing rate f(¢) and the steady-
state rate? The net effect of synaptic time constants and adaptation currents can all
be lumped into a single, low-pass temporal filter that can, from a phenomenological
point-of-view, be described by a first-order differential equation

s T — 10 - ). (1419)

where 7.5 is the above mentioned effective time constant (in the 20 to 30 msec range,
in particular if one wants to account for both NMDA as well as adaptation currents).
This time-constants is not related to the passive membrane time constant 7,,. This
constitutes an alternative procedure to eqs. 14.15 and 16 to define a firing rate model
(Abbott, 1994). It gives rise to the same phenomenological equation but with a different
physiological interpretation.

We conclude that because the discharge rate is often quite linear over the relevant range
of firing rates (Granit, Kernell and Shortess, 1963; Ahmed et al., 1993), a linear threshold
unit with no threshold may often be a satisfactory approximation for the firing rate of a real
neuron.
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14.4 Neural Networks

Neural networks consist of a large number of neurons connected using a scalar synaptic
weight w;;. Almost always, the single cell model used is a mean rate one, from the earliest
publications of Steinbuch (1961) to Wilson and Cowan (1972), Hopfield (1984) and more
recent work (summarized in Arbib, 1995).

14.4.1 Linear Synaptic Interactions are Common to Almost All
Neural Networks

The evolution of the network, often termed neurodynamics, is governed by a coupled system
of single cell equations. For any one cell i (out of n such cells) it takes the form of

cMilt) _ _Vilt) g Z wiif;(8), (14.20)

dt R

where f; is the firing rate of the j-th neuron and I; corresponds to the external current
injected into the cell. f; is related to V; via eq. 14.16, that is via a stationary nonlinearity

fi(t) = g(Vi(t)) - (14.21)

In our usual circuit idiom (Fig. 14.8) in which both f; and V; are voltages, the synaptic
coupling between the two neurons, i.e. w;j;, has the dimension of a conductance. Negative,
hyperpolarizing synapses are implemented by inverting the output of the amplifier. The
evolution of the circuit in Fig. 14.8 can be expressed by an equation of the form shown in
eq. 14.20.

Different from the biophysics of synaptic conductance inputs (section 4.5), a change 0 f;
in the firing activity of the j-th presynaptic neuron leads to a change w;;0f; in the current
delivered to the operational amplifier. In effect, the synaptic inputs act as current sources
and no nonlinear interaction among synaptic inputs exists.

Firing-rate models incorporating a low-pass filter to capture the passive properties of the
underlying membrane have been applied widely in abstract neural network analysis (Wilson
and Cowan, 1972; Cohen and Grossberg, 1983; Hopfield, 1984; Arbib, 1995; an excellent
textbook covering this area in a relative intuitive manner is the one by Hertz, Krogh and
Palmer, 1991) and in the analysis of the dynamics of real neurobiological networks (Knight,
Toyoda and Dodge, 1970; Abbott, 1991; Traub and Miles, 1991; Amit and Tsodyks, 1991;
Carandini and Heeger, 1994).

The study of the evolution of networks of spiking neurons—usually either of the integrate-
and-fire or of the Hodgkin-Huxley variety—has only began of late due to the discontinuous
nature of their output and the attendant mathematical difficulties (Hansel and Mato, 1993;
van Vreeswijk and Abbott, 1993; Usher, Stemmler, Koch and Olami, 1994; van Vreeswisk
and Sompolinsky, 1996; Maass, 1996). Given the revival of interest in the role of spike
timing in computation, more progress is likely to be just around the corner. The equations



Single Cell Models 339

\Y
1) : I__>k_
: 2?

Vv
> 2 >_

T C>RZ W > Mo

= f

Figure 14.8: Two INTERACTING FIRING CELLS IN A NEURAL NETWORK
Circuit model of two interacting mean rate neurons. Such continuous output units constitute
the standard working horse of neural networks. Common to all is that the coupling among neu-
rons is characterized by a scalar w;; that can take on any real value, depending on whether the
synapse is inhibitory or excitatory. The interaction among synaptic inputs is strictly linear. Lo-
cal learning rules of the type discussed in section 13.6 are used for determining the amplitude
of the w;j’s. A qualitatively very similar model of linear synaptic interactions has been used in
the neural network community for studying the computational power of networks of spiking units.

of motion of such a network are remain governed by linear synaptic interactions that usually
take the form of
dvi(t) _ Vi(t)

C - — + Il + Z wi]' Z (S(t — tjk) s (1422)
dt R =

with an auxiliary equation for the voltage to deal with the refractory period (or adaptation)
following spike generation (Usher et al., 1994). The second sum on the right hand side
includes all times ¢;; at which the j-th neuron generated a spike. Each time this happens all
of the postsynaptic targets of j receive a current pulse of amplitude w;; (propagation delays
can easily be incorporated into this notation).
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14.4.2 Multiplicative Interactions and Neural Networks

The bottom line of the previous section is that the vast majority of neural networks have
been built on the assumption of linearity of synaptic interactions. The nonlinearity that is
necessary for any true information processing to occur resides solely in the firing mechanism
at the output of the cell (V};, for spiking models and ¢ for rate neurons).

In view of the many different types of nonlinear interactions that can occur in the den-
dritic tree, including AND-NOT interactions (section 5.1), NMDA synapses (section 5.2)
and the voltage-dependent calcium and sodium membrane conductances found in the den-
dritic tree as discussed as length in chapter 19, it appears wise to cast around for some
canonical single cell model that captures some of these nonlinearities yet is simple enough
to be still amenable to analysis.

.From a computational point of view, the simplest nonlinearity is multiplication, as in

M(xy,29) = axy - 24, (14.23)

(with o # 0). A substantial body of evidence supports the presence of multiplicative-like
operations in the nervous system (Koch and Poggio, 1992). Physiological and behavioral data
strongly suggest that the optomotor response of insects to moving stimuli is mediated by a
correlation-like operation. Psychophysical work in humans from a number of independent
groups strongly supports models of the correlation type, albeit with spatio-temporal filters
different from those in insects. Simple cells recorded in the primary visual cortex of the
cat (Emerson, Bergen and Adelson, 1992) appear to encode some of the stages in the most
popular of these algorithms, the spatio-temporal energy model of motion perception (Adelson
and Bergen, 1985). From a mathematical point of view, all these motion algorithms can be
implemented by multiplication among two inputs (Buchner, 1984; Hildreth and Koch, 1987;
Poggio, Yang and Torre 1989; Koch and Poggio, 1992).

Another instance of a multiplication-like operation in the nervous system is the modula-
tion of the receptive field location of neurons in posterior parietal cortex by the eye and head
position of the monkey (Andersen, Essick and Siegel , 1985; Zipser and Andersen, 1988; Van
Opstal and Hepp, 1995; Brotchie, Andersen, Snyder and Goddman, 1995). This operation
serves to transform the image from a retinal coordinate system into one that takes eye and
body position into account. A final example is the output of an identified neuron—the de-
scending contralateral movement detector—in the visual pathway of the locust that signals
rapidly approaching objects. Its firing rate can be accurately described as the product of
the angular image velocity and a term that depends exponentially on the angular size of the
approaching object on the animal’s retina (Hatsopoulos, Gabbiani and Laurent, 1995).

The generalization of multiplicative algorithms are polynomial ones. The output of a
polynomial cell consists of the sum of contributions from a set of products:

P(x) = a) + by + bowg + 107 + comy Ty + -+ - dy 3wy - - (14.24)

where x = (1, X9, ...) represents the synaptic input and the scalar P(x) the output of the
unit. Single cell models that implement such a function are known as sigma-pi or higher-



Single Cell Models 341

order® units (Feldman and Ballard, 1982; Volper and Hampson, 1987; Mel, 1992). If the
highest order product in eq. 14.24 is quadratic, that is only terms such as z;z; and z7 are
represented and d; and all higher coefficients are all identical to zero, the neuron is known
as a second-order or multiplicative unit.

The evolution of the membrane potential is identical to the one used in the linear thresh-

old ones. For a second-order multiplicative unit it is

dvi(t) _ _Vi(®) n
dt R )+ 33 Wl i (1) (14.25)

j=1 j=lk=1

C

Associated with this single cell model are second-order “synapses” wj;,. Such a synapse only
contribute to the postsynaptic potential if both inputs ;7 and k£ are simultaneously active.
In principle, up to n? synapses exist per neuron. For real neurons with dendritic trees, the
connectivity matrices w;; and w;;, are not independent of each other but are functions of
the cable properties and of the specific synaptic architecture used. In general, they are also
functions of time.

As an illustrative example, let us re-interpret the interaction occurring between an ex-
citatory and a silent inhibitory synapse in a passive dendritic tree of a direction-selective
cell—assuming that the conductance inputs g, and g; are small—in terms of a multiplicative
unit (section 5.1). We assume that the excitatory postsynaptic conductance change g, is
proportional to the presynaptic firing frequency f. of the neuron e and that the amplitude of
the silent inhibition g; is proportional to the firing frequency f; of an inhibitory cell synaps-
ing onto the cell. With F; = 0, we can re-express the steady-state potential of the direction
selective cell j in eq. 5.13 as

V} - wjefe - wjeeer - wjeifefi . (1426)

The synaptic strengths are specified in terms of the input and transfer resistances and batter-
ies as wj, = K, Kes, Wjee = E, KesKee and wje; = E Kstw Note the unconventional nature
of the dimensions of f and w. Equation 14.26 directly illustrates the connection between the
nonlinear interaction among synapses and multiplicative neural network units.

Mel (1992, 1993, 1994) argues persuasively that NMDA synaptic input in combination
with voltage-dependent sodium and calcium conductances distributed throughout the den-
dritic tree implements something akin to eq. 14.24 (section 5.2). Synaptic input distributed
in spatial clusters throughout the dendritic tree approximates a polynomial, in the sense that
simultaneous excitation of m (where m can be large) neighbouring synapses causes a larger
somatic response than activation of a similar number of synapses distributed in a diffuse
fashion throughout the tree (Figs. 5.7-5.9). Different from eq. 14.26, this operation is both
more robust and less specific, since the absence of any one particular input will have little
effect on the overall output (as indicated by the broad peak in Fig. 5.8B).

It is easy to see the power of polynomial units in the case of binary, Boolean functions and
circuits. For instance, a single such unit can implement an exclusive-or function, something

3 Order refers to the maximal number of variables multiplied in each term (three in the case of eq. 14.24).
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that a single-layer neural network of linear threshold units is unable to do (for a rigorous
investigation of this, see Bruck, 1990; Bruck and Smolensky, 1992; for background material
see Koch and Poggio, 1992). Of course, neurons always have a second type of nonlinear
operation available to them in the form of a nonlinear mapping g (eq. 14.16) or hgs (eq. 14.18).

14.5 Recapitulation

We started off this chapter by defining the instantaneous firing frequency f(¢). It is a fictive
variable that can be obtained by averaging the spiking response of a single neuron to multiple
presentations of the same stimulus. Due to the stochastic nature of the neuronal response the
exact microstructure of spike trains are rarely reproducible from trial to trial. This is why
the temporal average of the firing rate, (f(¢)), is the most common variable measured during
neurophysiological experiments. In a handful of experiments (f), evaluated over fractions of
a second or longer, has been directly related to the behavior of the animal.

There is no question that firing rate codes that preserve temporal information at the 5
to 10 msec level are used in the nervous system. To what extent more complex correlation
codes—exploiting information encoded among n-tuples of spikes from one neuron, or spiking
information across multiple neurons—exist remains a subject of considerable debate.

What is the simplest model of a single neuron that captures some of its key operations?
Two family of models are in common use today: integrate-and-fire and continuous firing rate
models. While the former retains the timing information of individual action potentials the
latter assumes that it is only the average or mean firing rate of a neuron that matters to its
postsynaptic targets. Both neglect the dendritic tree and both eliminate the complex time
course of the sodium and potassium membrane conductances underlying spiking.

The key insight behind the various guises of the integrate-and-fire model is that from
a phenomenological point of view the neuron possesses two domains of operation, a sub-
and a supra-threshold one. In the subthreshold domain, synaptic inputs are integrated
and decay away; their temporal evolution is governed by the time constant 7. Once the
voltage threshold is reached, a pulse is generated and the membrane potential is reset.
Different versions of integrate-and-fire models, incorporating various mechanisms to account
for adaptation, can be well fitted to the discharge curves of cortical and other cells. It
will be argued in section 17.3 that firing in response to fast synaptic input in complex,
conductance-based single cell models is, indeed, initiated whenever a voltage threshold is
exceeded.

In response to a suprathreshold stimulus, these units, in accordance with their biological
counterparts, can spike in a time 73, < 7. A network of integrate-and-fire units can respond
almost instantaneously to a stimulus. The take home lesson is that the dynamics of the
subthreshold domain do not carry over into the suprathreshold domain.

In firing rate neurons the continuous output variable is an instantaneous function of the
voltage. Since the evolution of the voltage is dictated by a time constant, the firing rate
will always be low-pass filtered with respect to the input current, distinct from the response
of real neurons and different from integrate-and-fire units. If one would like to retain the
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continuous nature of the firing rate model, a more physiologically correct way to achieve
this would be to make the steady-state firing rate a function of the total current (synaptic,
dendritic or otherwise) at the cell body. The output of such a neuron can be interpreted as
the firing rate associated with a population of spiking cells.

At the heart of the vast majority of neural networks lies the assumption that synaptic
inputs interact in a linear manner. The nonlinearity that is necessary for computation is
relegated to the firing mechanism at the output. A biophysical more faithful and more
complex model that incorporates multiplicative interactions among synaptic inputs is the
polynomial or sigma-pi unit.

Multiplication is a key operation underlying many neuronal operations. Chapter 5 treated
the evidence in favor of the view that a dendritic tree endowed with NMDA synapses and
voltage-dependent membrane conductances (see chapter 19 for this) can implement a robust
version of such a polynomial unit. The nonlinear operations underlying the polynomial
interactions do not depend on the threshold occurring at the cell body but precede it. The
computational power of such neurons is considerably beyond that of their feeble-minded
linear threshold counterparts.



