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1. System of Linear Equations

L.1 Solutions and elementary operations

Practical problems in many fields of study—such as biology,
business, chemistry, computer science, economics, electronics,
engineering, physics and the social sciences—can often be reduced
to solving a system of linear equations. Linear algebra arose from
attempts to find systematic methods for solving these systems, so it
is natural to begin this book by studying linear equations.

If a, b, and C are real numbers, the graph of an equation of the
form

ar +by =c

is a straight line (if @ and b are not both zero), so such an equation

is called a linear equation in the variables ' and Y. However, it

is often convenient to write the variables as Z'1,X9,..., Ty,
particularly when more than two variables are involved. An equation
of the form
a171 + AT + - + ATy = b
is called a linear equation in the 72 variables '1, X9, ..., Tp.
Here a1, a9, . .., Qy denote real numbers (called the coefficients
of 1,2, ..., Ty, respectively) and b is also a number (called

the constant term of the equation). A finite collection of linear
equations in the variables 1, X9, ..., Xy is called a system of
linear equations in these variables. Hence,
201 —3x9 + 513 =7
is a linear equation; the coefficients of 2:1, X2, and X3 are 2, —3,
and 5, and the constant term is 7. Note that each variable in a linear
equation occurs to the first power only.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-1

Given a linear equation @121 + agx9 + - -+ + anTy = b,
a sequence S1, S92, ..., Sp of 72 numbers is called a solution to
the equation if

ai1S1+agss + - +aps, = b

that is, if the equation is satisfied when the substitutions
xr1 = S1,T2 = S9,...,Tn = Sy, are made. A sequence of
numbers is called a solution to a system of equations if it is a
solution to every equation in the system.

A system may have no solution at all, or it may have a unique
solution, or it may have an infinite family of solutions. For instance,
the system & + Yy = 2, x+ Yy = 3 has no solution because the
sum of two numbers cannot be 2 and 3 simultaneously. A system
that has no solution is called inconsistent; a system with at least
one solution is called consistent.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-2
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Show that, for arbitrary values of S and 7,

r1=t—s+1
To=t+s+2
T3 =35
T4 =1

is a solution to the system

T —2x0 +3x3 14 =—3
201 — To+3rx3—x4= 0

Simply substitute these values of x{, 2, 3, and 4 in each
equation.

1 —2x2+33+x4=(t—5+1)—2(t+s+2)+3s+t=-3
201 —xo+ 33— =2t —s+1)—(t+s5+2)+3s—t=0

Because both equations are satisfied, it is a solution for all choices
of Sand .

The quantities S and t in this example are called parameters, and
the set of solutions, described in this way, is said to be given in
parametric form and is called the general solution to the system. It
turns out that the solutions to every system of equations (if there
are solutions) can be given in parametric form (that is, the variables
x1, L2, . .. are given in terms of new independent variables S, t,
etc.).
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-7

When only two variables are involved, the solutions to systems of
linear equations can be described geometrically because the graph
of a linear equation ax + by = c is a straight line if @ and b
are not both zero. Moreover, a point (S ) t) with coordinates S
and t lies on the line if and only if a$ + bt = c—that is when
T = S,y = tisasolution to the equation. Hence the solutions to

a system of linear equations correspond to the points P (S, t) that
lie on all the lines in question.

In particular, if the system consists of just one equation, there
must be infinitely many solutions because there are infinitely many
points on a line. If the system has two equations, there are three
possibilities for the corresponding straight lines:

* The lines intersect at a single point. Then the system has a
unique solution corresponding to that point.

* The lines are parallel (and distinct) and so do not intersect.
Then the system has no solution.

* The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=5#h5p-132

With  three variables, the graph of an equation
ar + by + ¢z = d can be shown to be a plane and so again
provides a “picture” of the set of solutions. However, this graphical
method has its limitations: When more than three variables are
involved, no physical image of the graphs (called hyperplanes) is
possible. It is necessary to turn to a more “algebraic” method of
solution.
Before describing the method, we introduce a concept that
simplifies the computations involved. Consider the following system
31 +2x2 — a3+ 14=-1
211 — x34+2x4= 0
31+ x9+2x3+dxrsa= 2

of three equations in four variables. The array of numbers
3 2 -1 1|-1
2 0 -1 2 0
31 2 5| 2

occurring in the system is called the augmented matrix of the
system. Each row of the matrix consists of the coefficients of the
variables (in order) from the corresponding equation, together with
the constant term. For clarity, the constants are separated by a
vertical line. The augmented matrix is just a different way of
describing the system of equations. The array of coefficients of the
variables
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is called the coefficient matrix of the system and
-1

0 | is called the constant matrix of the system.

2

a Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-130

Elementary Operations

The algebraic method for solving systems of linear equations is
described as follows. Two such systems are said to be equivalent if
they have the same set of solutions. A system is solved by writing
a series of systems, one after the other, each equivalent to the
previous system. Each of these systems has the same set of
solutions as the original one; the aim is to end up with a system
that is easy to solve. Each system in the series is obtained from the
preceding system by a simple manipulation chosen so that it does
not change the set of solutions.

As an illustration, we solve the system x -+ 2y = —2,
2x + 1y = 7 in this manner. At each stage, the corresponding
augmented matrix is displayed. The original system is
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x4+ 2y=-2 1 2| -2
2+ y= 7 2 1 7

First, subtract twice the first equation from the second. The
resulting system is

T+ 2y=-2 1 2 —2
—3y= 11 0 —3| 11
which is equivalent to the original. At this stage we obtain
Yy=— 13—1 by multiplying the second equation by — % The result is
the equivalent system
T+ 2y= —2 ll 2| —2}
__u _u
y=—3 0 1 3

Finally, we subtract twice the second equation from the first to
get another equivalent system.

T = ? 10 ?
yz—% 0 1 —%

Now this system is easy to solve! And because it is equivalent to
the original system, it provides the solution to that system.

Observe that, at each stage, a certain operation is performed
on the system (and thus on the augmented matrix) to produce an
equivalent system.

Definition 1.1 Elementary Operations
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The following operations, called elementary operations,
can routinely be performed on systems of linear equations
to produce equivalent systems.

1. Interchange two equations.

2. Multiply one equation by a nonzero number.

3.  Add a multiple of one equation to a different
equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is
performed on a system of linear equations. Then the
resulting system has the same set of solutions as the
original, so the two systems are equivalent.

Elementary operations performed on a system of equations produce
corresponding manipulations of the rows of the augmented matrix.
Thus, multiplying a row of a matrix by a number k£ means
multiplying every entry of the row by k. Adding one row to another
row means adding each entry of that row to the corresponding
entry of the other row. Subtracting two rows is done similarly. Note
that we regard two rows as equal when corresponding entries are
the same.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-8

In hand calculations (and in computer programs) we manipulate the
rows of the augmented matrix rather than the equations. For this
reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a
matrix.

1.  Interchange two rows.
2.  Multiply one row by a nonzero number.
3.  Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix
of the form
1 0=
l 0 1]=x ]

where the asterisks represent arbitrary numbers. In the case of

three equations in three variables, the goal is to produce a matrix of
the form
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1 0 0=
0 1 0=
0 0 1]=x

This does not always happen, as we will see in the next section.
Here is an example in which it does happen.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-131

Example 1.1.3 Find all solutions to the following system of equations.

3r+4y+z2z= 1
2z + 3y = 0
dx+3y—z2=-2

Solution:
The augmented matrix of the original system is
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To create a 1 in the upper left corner we could multiply row 1
through by % However, the 1 can be obtained without introducing
fractions by subtracting row 2 from row 1. The result is

11 1 1
2 3 0 0
4 3 —-1|-2

The upper left 1 is now used to “clean up” the first column, that is
create zeros in the other positions in that column. First subtract 2
times row 1 from row 2 to obtain

11 1 1
01 —-2|-2
4 3 —-1|-=-2

Next subtract 4 times row 1 from row 3. The result is

1 1 1 1
0 1 -2] -2
0 -1 -5|-6

This completes the work on column 1. We now use the 1 in the
second position of the second row to clean up the second column
by subtracting row 2 from row 1and then adding row 2 to row 3. For
convenience, both row operations are done in one step. The result
is
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10 3| 3
01 —-2|-=-2
00 —-7|-8

Note that the last two manipulations did not affect the first
column (the second row has a zero there), so our previous effort
there has not been undermined. Finally we clean up the third
column. Begin by multiplying row 3 by — % to obtain

10 3| 3
01 —2|-2
00 1| 8

Now subtract 3 times row 3 from row 1, and then add 2 times row
3 to row 2 to get

3
10 0|2
2
01 0| 2
8
00 1| 8
. . _ 3., _ 2 _ 8
The corresponding equationsare T = — =, Y = Z,and 2 = =

, which give the (unique) solution.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-133
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1.2 Gaussian elimination

The algebraic method introduced in the preceding section can be
summarized as follows: Given a system of linear equations, use a
sequence of elementary row operations to carry the augmented
matrix to a “nice” matrix (meaning that the corresponding equations
are easy to solve

~

. In Example 1.1.3, this nice matrix took the form
*

o O =

0
1
0

— o O

*
*

The following definitions identify the nice matrices that arise in
this process.

Definition 1.3 row-echelon form (reduced)

A matrix is said to be in row-echelon form (and will be
called a row-echelon matrix if it satisfies the following
three conditions:

1. All zero rows (consisting entirely of zeros) are at
the bottom.

2. The first nonzero entry from the left in each
nonzero row is a 1, called the leading 1 for that row.

3. Eachleading 1 is to the right of all leading 1s in the
rows above it.
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A row-echelon matrix is said to be in reduced row-
echelon form (and will be called a reduced row-echelon
matrix if, in addition, it satisfies the following condition:

4. Eachleading 1 is the only nonzero entry in its
column.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-3

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-6

The row-echelon matrices have a “staircase” form, as indicated by
the following example (the asterisks indicate arbitrary numbers).
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The leading 1s proceed “down and to the right” through the matrix.
Entries above and to the right of the leading 1s are arbitrary, but
all entries below and to the left of them are zero. Hence, a matrix
in row-echelon form is in reduced form if, in addition, the entries
directly above each leading 1 are all zero. Note that a matrix in
row-echelon form can, with a few more row operations, be carried
to reduced form (use row operations to create zeros above each
leading one in succession, beginning from the right).

The importance of row-echelon matrices comes from the
following theorem.

Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon
form by a sequence of elementary row operations.

In fact we can give a step-by-step procedure for actually finding a
row-echelon matrix. Observe that while there are many sequences
of row operations that will bring a matrix to row-echelon form, the
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one we use is systematic and is easy to program on a computer.
Note that the algorithm deals with matrices in general, possibly with
columns of zeros.

Gaussian Algorithm

Step 1. If the matrix consists entirely of zeros, stop—it is
already in row-echelon form.

Step 2. Otherwise, find the first column from the left
containing a nonzero entry (call it @), and move the row
containing that entry to the top position.

Step 3. Now multiply the new top row by 1 / Q to create a
leading 1.

Step 4. By subtracting multiples of that row from rows
below it, make each entry below the leading 1 zero. This
completes the first row, and all further row operations are
carried out on the remaining rows.

Step 5. Repeat steps 1-4 on the matrix consisting of the
remaining rows.

The process stops when either no rows remain at step 5
or the remaining rows consist entirely of zeros.

Observe that the gaussian algorithm is recursive: When the first
leading 1 has been obtained, the procedure is repeated on the
remaining rows of the matrix. This makes the algorithm easy to use
on a computer. Note that the solution to Example 1.1.3 did not use
the gaussian algorithm as written because the first leading 1 was not
created by dividing row 1 by 3. The reason for this is that it avoids
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fractions. However, the general pattern is clear: Create the leading 1
s from left to right, using each of them in turn to create zeros below
it. Here is one example.

Example 1.2.2 Solve the following system of equations.

3r+y— 4z=-1
x +10z= 5
de+y+ 62= 1

Solution:
The corresponding augmented matrix is
31 -4 -1
1 0 10 5)
4 1 6 1

Create the first leading one by interchanging rows 1 and 2

1 0 10| 5
31 -4 -1
41 6| 1

Now subtract 3 times row 1 from row 2, and subtract 4 times row
1 from row 3. The result is
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1 0 10 5)
0 1 —34|-16
0 1 —34|-19

Now subtract row 2 from row 3 to obtain

1 0 10 5
0 1 —-34|-16
0 O 0| -3

This means that the following reduced system of equations
r +10z= 5
y—342=—-16
0= -3

is equivalent to the original system. In other words, the two have
the same solutions. But this last system clearly has no solution
(the last equation requires that X, Yy and 2 satisfy
Oz 4+ Oy + 0z = —3, and no such numbers exist). Hence the
original system has no solution.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-9

To solve a linear system, the augmented matrix is carried to reduced
row-echelon form, and the variables corresponding to the leading
ones are called leading variables. Because the matrix is in reduced
form, each leading variable occurs in exactly one equation, so that
equation can be solved to give a formula for the leading variable

18 | System of Linear Equations



in terms of the nonleading variables. It is customary to call the
nonleading variables “free” variables, and to label them by new
variables S,7,..., called parameters. Every choice of these
parameters leads to a solution to the system, and every solution
arises in this way. This procedure works in general, and has come to
be called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix\index{augmented
matrix}\index{matrix!augmented matrix} to a
reduced row-echelon matrix using elementary row

operations.

2. Ifarow[ O 0 0 --- 0 1 ]occurs,the
system is inconsistent.

3. Otherwise, assign the nonleading variables (if any)

as parameters, and use the equations corresponding
to the reduced row-echelon matrix to solve for the
leading variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix
is carried only to row-echelon form. The nonleading variables are
assigned as parameters as before. Then the last equation
(corresponding to the row-echelon form) is used to solve for the
last leading variable in terms of the parameters. This last leading
variable is then substituted into all the preceding equations. Then,
the second last equation yields the second last leading variable,
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which is also substituted back. The process continues to give the
general solution. This procedure is called back-substitution. This
procedure can be shown to be numerically more efficient and so is
important when solving very large systems.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-10

Rank

It can be proven that the reduced row-echelon form of a matrix A
is uniquely determined by A. That is, no matter which series of row
operations is used to carry A to a reduced row-echelon matrix,
the result will always be the same matrix. By contrast, this is not
true for row-echelon matrices: Different series of row operations
can carry the same matrix A to different row-echelon matrices.
1 -1 4
2 -1 2

Indeed, the matrix A = l can be carried (by one

1 -1 4

,a
0 1 -6
then by another row operation to the (reduced) row-echelon matrix

[10—2

row operation) to the row-echelon matrix nd

01 -6

1s must be the same in each of these row-echelon matrices (this will

} . However, it is true that the number 7 of leading

be proved later). Hence, the number 7 depends only on A and not
on the way in which A is carried to row-echelon form.
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Definition 1.4 Rank of a matrix

The rank of matrix A is the number of leading 1s in any
row-echelon matrix to which A can be carried by row
operations.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-136

Example 1.2.5

1 1 -1 4
Compute therankof A = | 2 1 3 0
01 -5 8

Solution:

The reduction of A to row-echelon form is
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11 -1 4 1 1 -1 4 11 -1 4
A=121 30| =10 -1 5 8| =01 =5 8
01 -5 8 0 1 -5 8 00 00O

Because this row-echelon matrix has two leading 1s, rank A = 2

Suppose that rank A = 7, where A is a matrix with m rows
and 1 columns. Then 7 < 7 because the leading 1s lie in different
rows, and 7 < 7 because the leading 1s lie in different columns.
Moreover, the rank has a useful application to equations. Recall that
a system of linear equations is called consistent if it has at least one
solution.

Theorem 1.2.2

Suppose a system of 717 equations in 72 variables is
consistent, and that the rank of the augmented matrix is 7.

1. The set of solutions involves exactly @ — T
parameters.

2. Ifr < N, the system has infinitely many solutions.

3. Ifr = n, the system has a unique solution.

Proof:

The fact that the rank of the augmented matrix is 7" means there
are exactly 7 leading variables, and hence exactly T — T
nonleading variables. These nonleading variables are all assigned
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as parameters in the gaussian algorithm, so the set of solutions
involves exactly 70 — T parameters. Hence if 7" < T, there is at
least one parameter, and so infinitely many solutions. If " = 71,
there are no parameters and so a unique solution.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-11

Theorem 1.2.2 shows that, for any system of linear equations,
exactly three possibilities exist:

1. No solution. This occurs when a row [ 00 --- 01 }
occurs in the row-echelon form. This is the case where the
system is inconsistent.

2. Unique solution. This occurs when every variable is a leading
variable.

3. Infinitely many solutions. This occurs when the system is
consistent and there is at least one nonleading variable, so at
least one parameter is involved.

GeoGebra Exercise: Linear Systems:

https: //www.geogebra.org/m/cwQ9uYCZ
Please answer these questions after you open the webpage:
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1. For the given linear system, what does each one of them
represent?

2. Based on the graph, what can we say about the
solutions? Does the system have one solution, no solution
or infinitely many solutions? Why

3. Change the constant term in every equation to 0, what
changed in the graph?

4. For the following linear system:

xx+y=0,y+2=0x+2=0

Can you solve it using Gaussian elimination? When you
look at the graph, what do you observe?

Many important problems involve linear inequalities rather than
linear equations For example, a condition on the variables I and y
might take the form of an inequality 22 — 5%y < 4 rather than an
equality 2 — Dy = 4. There is a technique (called the simplex
algorithm) for finding solutions to a system of such inequalities that
maximizes a function of the form p = ax + by where @ and b
are fixed constants.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-137
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-135

1.3 Homogeneous equations

A system of equations in the variables T'1, X2, ..., Iy, is called
homogeneous if all the constant terms are zero—that is, if each
equation of the system has the form
a1x1 + agx2 + -+ apty =0

Clearlyx1 = 0,22 = 0, ..., 2z, = (isasolutiontosucha
system; it is called the trivial solution. Any solution in which at least
one variable has a nonzero value is called a nontrivial solution.
Our chief goal in this section is to give a useful condition for a
homogeneous system to have nontrivial solutions. The following
example is instructive.

Example 1.3.1

Show that the following homogeneous system has
nontrivial solutions.
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r1— X9+ 2x3—x4=0
2x1 + 229 +x4=0
3x1+ x9+2x3—24=0

Solution:
The reduction of the augmented matrix to reduced row-echelon
form is outlined below.

1 -1 2 -1]|0 1 -1 2 =110 10 1 0]0
2 20 1/0|—=]0 4 -4 3|{0|—=]01 -10)0
3 1.2 -1/0 0 4 -4 2|0 00 010

The leading variables are x1, 2, and X4, so I3 is assigned as

a parameter—say '3 = {. Then the general solution is x1 = —¢
, Lo =t,x3 =t, x4 = 0. Hence, taking t = 1 (say), we get a
nontrivial solution: 1 = —1, 20 = 1,373 = 1,5(2'4 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured
by the presence of a parameter in the solution. This is due to the fact
that there is a nonleading variable ('3 in this case). But there must
be a nonleading variable here because there are four variables and
only three equations (and hence at most three leading variables).
This discussion generalizes to a proof of the following fundamental
theorem.
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An interactive H5P element has been excluded from this
om
version of the text. You can view it online here:
https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-138

Theorem 1.3.1

If a homogeneous system of linear equations has more
variables than equations, then it has a nontrivial solution (in
fact, infinitely many).

Proof:

Suppose there are 1 equations in 72 variables where 70 > 17,
and let /2 denote the reduced row-echelon form of the augmented
matrix. If there are 1 leading variables, there are 77 — 7" nonleading
variables, and so T? — 7" parameters. Hence, it suffices to show that
7 < n.Butr < m because I has r leading 1s and 71 rows, and
M < 1 by hypothesis. So 7 < 1 < n, which gives " < 7.

Note that the converse of Theorem 1.3.1 is not true: if a
homogeneous system has nontrivial solutions, it need not have
more variables than equations (the system x7 + x9 = 0,
221 + 229 = 0 has nontrivial solutions but M = 2 = n,.)

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=5#h5p-12

Theorem 1.3.1 is very useful in applications. The next example
provides an illustration from geometry.

Example 1.3.2

We call the graph of an equation
2 2 . . .
ax + bxy + cy” + dx + ey + f = 0 aconicif
the numbers a, b, and C are not all zero. Show that there is
at least one conic through any five points in the plane that
are not all on a line.

Solution:

Let the coordinates of the five points be (pl, q]_), (pz, QQ),
(p3,q3), (p4,q4), and (ps5,g5). The graph of
ax? +bxy +cy? +dr+ey+ f =0 passes through
(pi> Gi) it

ap; + bpigi + cq; + dpi +eqi + f =0

This gives five equations, one for each %, linear in the six variables
a, b, C, d, e, and f . Hence, there is a nontrivial solution by Theorem
113.1fa = b = ¢ = (), the five points all lie on the line with
equation dx + ey + f = (), contrary to assumption. Hence,
one of a, b, C is nonzero.

28 | System of Linear Equations



@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-139

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the
same number of entries and corresponding entries are the same.
Let & and y be columns with the same number of entries. As for
elementary row operations, their sum & + ¥ is obtained by adding
corresponding entries and, if &k is a number, the scalar product kx
is defined by multiplying each entry of & by k. More precisely:

1 Y1 1+ % ka1

Z2 Y2 T2 + Yo kxo
If z = . and y = . then z+y = . and kx = .

Tn Yn Tp + Yn kxy,

A sum of scalar multiples of several columns is called a linear
combination of these columns. For example, s + t is a linear
combination of &’ and 9/ for any choice of numbers S and 7.
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Example 1.3.3

o= 2]l

wazeviy=| ]+ 2]-[2]

Example 1.3.4

determine whether © and W) are linear combinations of T,
Y and 2.
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Solution:
For U, we must determine whether numbers 7, S, and  exist such
that v = rx + Sy + tz, that is, whether

0 1 2 3 r 4 2s+ 3t
-1 {=r|O0|+s| 1 |+t]|1]|= s+t
2 1 0 1 r+t

Equating corresponding entries gives a system of linear equations
r+2s+3t=0,s+t=—1,andr +t = 2forr, s,and
t. By gaussian elimination, the solution is 7 = 2 — k,
s =—1—k andt = k where kisa parameter. Taking k=20
,we see that U = 20 — 1) is a linear combination of &, 9/, and 2.

Turning to U, we again look for 7, S, and ¥ such that
W = rx + Sy -+ tz; thatis,

1 1 2 3 r+2s+ 3t
1)1 =r]10|+s| 1|+t 1]|= s+t
1 1 0 1 r+t

leading to equations 7+ 2s+ 3t =1, s+t =1, and
r 4+t = 1 for real numbers 7, S, and t. But this time there is
no solution as the reader can verify, so W is not a linear combination
of ,y,and 2.

Our interest in linear combinations comes from the fact that they
provide one of the best ways to describe the general solution of a
homogeneous system of linear equations. When
solving such a system with 70 variables X1, X9, . .., Ly, write the
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I

T2
variables as a column matrix: o = . . The trivial solution is
xn
0
0 . . .
denoted () = . As an illustration, the general solution in
0
Example 13.1is 1 = —t, X9 = t, 3 = t,and x4 = 0, where
1 is a parameter, and we would now express this by
—t
: o t .
saying that the general solution is p — , where © is
0

arbitrary.

Now let & and Yy be two solutions to a homogeneous system
with 72 variables. Then any linear combination ST + {1 of these
solutions turns out to be again a solution to the system. More
generally:

Any linear combination of solutions to a homogeneous system is again a solution.
In fact, suppose that a typical equation in the system is
ai1x1 + asxo + - - - + a,x, = 0, and suppose that

T1 Y1
T2 Y2 )

T = ) oYy = . are  solutions.  Then
Tn Yn

a1r1 + agxe + -+ + apxy = Oand
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a1y1 + ay2 + - - - +apyy, = 0.
sr1 +ty1
sxo + ty2

Hence s + ty = is also a solution because

STn + tyn

ay(sz1 + tyr) + as(swa + ty2) + - - + an(szn + tyn)
= [a1(sz1) + az(s@2) + - - - + an(szp)] + [a1(ty1) + az2(ty2) + - - - + an(tyn)]
= s(a1z1 + agz2 + -+ + anxy) + tlaryr + agyz + - + anyn)
= 5(0) +t(0)
=0

A similar argument shows that Statement 1.1 is true for linear
combinations of more than two solutions.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=5#h5p-129

The remarkable thing is that every solution to a homogeneous
system is a linear combination of certain particular solutions and,

in fact, these solutions are easily computed using the gaussian
algorithm. Here is an example.
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Example 1.3.5

Solve the homogeneous system with coefficient matrix

1 -2 3 -2
A= -3 6 1 0
-2 4 4 -2

Solution:

The reduction of the augmented matrix to reduced form is

1 -2 3 —2]0 1 =20 -
3 61 0lo|l=>lo o1 -

O glw U
e} (@] o

0O 00

so the solutions are 1 = 28 + %t, To = S8, X3 = %, and

X4 = t by gaussian elimination. Hence we can write the general
solution T in the matrix form
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1 2s + %t [ 2 %
1
T = L2 = ; =3 +t 2 = sx1 + txo.
T4 t L 0 1
: B
1 0 . .
Here ; = 0 and g5 = 3 are particular solutions
5
0 1

determined by the gaussian algorith;n.
The solutions g1 and 9 in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions

The gaussian algorithm systematically produces solutions
to any homogeneous linear system, called basic solutions,
one for every parameter.

Moreover, the algorithm gives a routine way to express every
solution as a linear combination of basic solutions as in Example
1.3.5, where the general solution . becomes
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+1

O O =N
— ol O Ul
O O =N
| —
Tt W O

Hence by introducing a new parameter 7 = ¢ / O we can multiply
the original basic solution 9 by 5 and so eliminate fractions.
For this reason:

Convention:

Any nonzero scalar multiple of a basic solution will still be
called a basic solution.

In the same way, the gaussian algorithm produces basic solutions
to every homogeneous system, one for each parameter (there are
no basic solutions if the system has only the trivial solution).
Moreover every solution is given by the algorithm as a linear
combination of
these basic solutions (as in Example 1.3.5). If A has rank 7", Theorem
1.2.2 shows that there are exactly 7? — 7" parameters,andso 70 — T
basic solutions. This proves:

Theorem 1.3.2
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Let A be an M X 7 matrix of rank 7, and consider the
homogeneous system in 72 variables with A as coefficient
matrix. Then:

1. The system has exactly 72 — T basic solutions, one
for each parameter.

2. Every solution is a linear combination of these basic
solutions.

Example 1.3.6

Find basic solutions of the homogeneous system with
coefficient matrix A, and express every solution as a linear
combination of the basic solutions, where

1 -3 0 2 2

—2 6 1 2 -5
A= 3 -9 —-1 0 7
-3 9 2 6 -8
Solution:

The reduction of the augmented matrix to reduced row-echelon

form is
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1 -3 02 2|0 1 -3 0 2 20
-2 6 1 2 —-5|0 . 0 016 —-1]0
3 -9 -1 0 7|0 0 0 0O0 0]0
-3 9 2 6 -8|0 0 000 0]0

so the general solution is x1 = 3r — 2s — 2t, xo =,
T3 = —6s+1t, x4 = S, and x5 =t where 7, S, and  are
parameters. In matrix form this is

T1 3r—2s—2t 3 —2 -2
9 r 1 0 0
r=| 23 | = —6s+t =r| 0| +s| —6 |+t 1
T4 s 0 1 0
T5 t 0 0 1
Hence basic solutions are
3 —2 —2
1 0 0
r1=1]01],29=1| —6 |, 3= 1
0 1 0
| 0 | 0 ] |1 ]
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-140

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-128

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-13

System of Linear Equations | 39



2. Matrix Algebra

Introduction

In the study of systems of linear equations in Chapter 1, we found
it convenient to manipulate the augmented matrix of the system.
Our aim was to reduce it to row-echelon form (using elementary
row operations) and hence to write down all solutions to the system.
In the present chapter we consider matrices for their own sake.
While some of the motivation comes from linear equations, it turns
out that matrices can be multiplied and added and so form an
algebraic system somewhat analogous to the real numbers. This
“matrix algebra” is useful in ways that are quite different from the
study of linear equations. For example, the geometrical
transformations obtained by rotating the euclidean plane about the
origin can be viewed as multiplications by certain 2 X 2 matrices.
These “matrix transformations” are an important tool in geometry
and, in turn, the geometry provides a “picture” of the matrices.
Furthermore, matrix algebra has many other applications, some of
which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.

Arthur Cayley (1821-1895) showed his mathematical
talent early and graduated from Cambridge in 1842 as
senior wrangler. With no employment in mathematics in
view, he took legal training and worked as a lawyer while
continuing to do mathematics, publishing nearly 300
papers in fourteen years. Finally, in 1863, he accepted
the Sadlerian professorship in Cambridge and remained
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there for the rest of his life, valued for his administrative
and teaching skills as well as for his scholarship. His
mathematical achievements were of the first rank. In
addition to originating matrix theory and the theory of
determinants, he did fundamental work in group theory,
in higher-dimensional geometry, and in the theory of
invariants. He was one of the most prolific
mathematicians of all time and produced 966 papers.

2.1 Matrix Addition, Scalar Multiplication,
and Transposition

A rectangular array of numbers is called a matrix (the plural is
matrices), and the numbers are called the entries of the matrix.
Matrices are usually denoted by uppercase letters: A, B, (', and so

on. Hence,
1 2 -1 1 -1 1
A:lo 5 6] B:lo 2] ¢= ;)

are matrices. Clearly matrices come in various shapes depending
on the number of rows and columns. For example, the matrix A
shown has 2 rows and 3 columns. In general, a matrix with 172 rows
and 7 columns is referred to as an 770 X 70 matrix or as having
size M X T, Thus matrices A, B, and C' above have sizes 2 X 3
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, 2 x 2, and 3 X 1, respectively. A matrix of size 1 X niscalleda
row matrix, whereas one of size 770 X 1 is called a column matrix.
Matrices of size 70 X T for some T are called square matrices.

Each entry of a matrix is identified by the row and column in
which it lies. The rows are numbered from the top down, and the
columns are numbered from left to right. Then the (i, j)—entry of
a matrix is the number lying simultaneously in row 2 and column 7 .
For example,

The (1,2)-entry of l (1) _1 } is — 1.

1 2 —-1].
The (2, 3)-entry of [ 05 6 ] is 6.

A special notation is commonly used for the entries of a matrix. If
A'is an M X N matrix, and if the (4, 7 )-entry of A is denoted as
Qjj, then A is displayed as follows:

air] a2 a3z -+ Qip

a1 G2 A23 - A2p
A=

aAml am2 am3 - Amn

This is usually denoted simply as A = [aij]- Thus @;; is the
entry in row % and column j of A. For example, a 3 X 4 matrix in
this notation is written

ajl1 a2 a3 a4
A= | a1 a2 a3 ax

a31 az2 a33 as4

It is worth pointing out a convention regarding rows and columns:
Rows are mentioned before columns. For example:
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 If a matrix has size 70 X 7, it has 1M, rows and 72 columns.

« If we speak of the (%, 7 )-entry of a matrix, it lies in row % and
column 7.

* Ifanentry is denoted a;, the first subscript 1 refers to the
row and the second subscript ] to the column in which a;;
lies.

Two points (331, yl) and (Ig, yg) in the plane are equal if and
only if they have the same coordinates, that is 11 = x9 and
Y1 = Y2. Similarly, two matrices A and B are called equal
(written A=B ) if and only if:

1. They have the same size.
2. Corresponding entries are equal.

If the entries of A and B are written in the form A = [aij]»
B = [bij], described earlier, then the second condition takes the
following form:

A = [a;j] = [bij] means a;; = b;; for all i and j

Example 2.1.1

: _la b |1 2 -1
leenA—lC d],B—l3 0 1]and

1 0
¢= { 1 9!
discuss the possibility that A = B, B = C, A = C.

Solution:
A = B is impossible because A and B are of different sizes:
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Ais2 X 2 whereas Bis2 X 3. Similarly, B = (' is impossible.
But A =C'is possible provided that corresponding entries are
equal:

HiNET

meansqg = 1,b=0,¢c = —1,andd = 2.

excluded from this version of the text.

a An interactive H5P element has been

You can view it online here:
hteps://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#hsp-14

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum
A + B is the matrix formed by adding corresponding
entries.

If A = [a;j] and B = [b;;], this takes the form
A+ B = [a + by]

Note that addition isnot defined for matrices of different sizes.
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Example 2.1.2

2 1 3
FA=1_1 9 ¢
1 1 —1
and B = 9 0 6
compute A + B.
Solution:
_ 2+1 141 3-1| |3 2 2
A+B=1 115 240 0+61_[1 2 6]

Example 2.1.3

Find a, b, and C if
[a, b c]—i—[c a b]:[3 2 —1].

Solution:
Add the matrices on the left side to obtain
[a—I—c b+a c+b]:[3 2 —1]

Because corresponding entries must be equal, this gives three
equations: @ +¢c =3, b+ a = 2, and ¢ + b = —1. Solving
theseyieldsa = 3,b = —1,¢ = (.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-15

If A, B, and C are any matrices of the same size, then

(commutative law)
A+B=B+A
A+ (B+C)=(A+B)+C (associative law)

In fact, if A = [a;;] and B = [b;;], then the (1, j)-entries of
A+ Band B + A are, respectively, a;; + b;j and b;; + a;;

. Since these are equal for all ¢ and ] , we get

A+B=[ajj+by; | =[bj+aj | =B+A

The associative law is verified similarly.

The T X T matrix in which every entry is zero is called the
1M X N zero matrix and is denoted as () (or 0,y if it is important
to emphasize the size). Hence,

0+X =X

holds for all 772 X 7 matrices X . The negative of an 1772 X N
matrix A (written —A) is defined to be the 7 X 7 matrix
obtained by multiplying each entry of Aby —1.1f A = [aij]v this
becomes —A = [_az’j]~ Hence,

A+ (—A) =0

holds for all matrices A where, of course, () is the zero matrix of

the same size as A.
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A closely related notion is that of subtracting matrices. If A and
B are two ™M X T matrices, their difference A — B is defined
by

A—B=A+ (-B)
Note that if A = [a;;] and B = [b;;], then
A — B = aij] + [=bis] = [aij — bij]

is the ™M X T matrix formed by subtracting corresponding

entries.

Example 2.14

3 =1 0
1 2 -4

1 -1 1 1 0 -2
B=[ 5 oele-50 7]

Compute —A, A-— B, and A+ B —C.

Solution:
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-1 -2 4

SRR I N

3+41-1 -1-1-0 0+17(72)}:{ 3 -2 3}

R

A+B_C:[17273 2401 —4+6-1 4 11

Example 2.1.5

Solve

EHESEn

where X is a matrix.

We solve a numerical equation @ + & = b by subtracting the
number @ from both sides to obtain € = b — @. This also works
for matrices. To solve

BN EE

simply subtract the matrix

48 | Matrix Algebra



]

from both sides to get

A Iy B g B vty B ey

The reader should verify that this matrix X does indeed satisfy
the original equation.

The solution in Example 2.1.5 solves the single matrix equation
A+ X = B directly via matrix subtraction: X=B-A
This ability to work with matrices as entities lies at the heart of
matrix algebra.

It is important to note that the sizes of matrices involved in some
calculations are often determined by the context. For example, if

1 3 -1
ave=|5 51

then A and C' must be the same size (so that A + C' makes
sense), and that size must be 2 X 3 (so that the sum is 2 X 3). For
simplicity we shall often omit reference to such facts when they are
clear from the context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number k
means multiplying every entry of that row by k.

Definition 2.2 Matrix Scalar Multiplication
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More generally, if A is any matrix and & is any number,
the scalar multiple k£ A is the matrix obtained from A by
multiplying each entry of A by k.

The term scalar arises here because the set of numbers from which
the entries are drawn is usually referred to as the set of scalars. We
have been using real numbers as scalars, but we could equally well
have been using complex numbers.

Example 2.1.6

3 1 4
fA=|o o
1 2 -1
andB—03 9 |

compute 5A, %B, and 3A —-2B,

Solution:
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_[15 =5 20 1, i1 -4
5’4_[10 030}’ o [og 1
9 -3 12 2 4 -2 7 -7 14
3A_ZB_[6 018}_[06 4]_{6 —6 14]

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-16

If A is any matrix, note that kA is the same size as A for all
scalars k. We also have

0A=0 and k0=0

because the zero matrix has every entry zero. In other words,
kA =0 if either Kk =0 or A = (). The converse of this
statement is also true, as Example 2.1.7 shows.

Example 2.1.7
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tkA = 0, show that either k=0orA=0.

Solution:

write A = [a;;] so that kA = 0 means ka;; = 0 for all 7
and J.1f k = (), there is nothing to do. If k # 0, then ka;; = 0
implies that @;; = O for all 4 and J; thatis, A = ().

For future reference, the basic properties of matrix addition and
scalar multiplication are listed in Theorem 2.1.1.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-29

Theorem 2.1.1

Let A, B, and C denote arbitrary 7% X 70 matrices
where 11 and 70 are fixed. Let k and ) denote arbitrary
real numbers. Then

. A+B=B-+ A
2 A+ (B+C)=(A+B)+C.

3. Thereisan 7 X 7 matrix (), such that
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0+ A = A foreach A.
For each A there is an 7 X T matrix, —A, such
that A + (—A) = 0.
k(A+ B) = kA + kB.
(k+p)A=kA+ pA
(kp)A = k(pA).
1A = A

b

® N 2 U

Proof:
Properties 1-4 were given previously. To check Property 5, let
A= [az’j] and B = [bij] denote matrices of the same size. Then
A+ B = [ai; + bij|. as before, so the (i,j)-entry of
kE(A+ B)is

k(aij + bij) = ka;; + kb;;

But this is just the (4, 7 )-entry of KA + kB, and it follows that
k(A + B ) = kA + kB. The other Properties can be similarly
verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with
matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies
that the sum

(A+B)+C=A+(B+C)

is the same no matter how it is formed and so is written as

A + B + (. Similarly, the sum
A+B+C+D

is independent of how it is formed; for example, it equals both
(A+B)+(C+D) and A+ [B+(C+ D).
Furthermore, property 1 ensures that, for example,

B+D+A+C=A+B+C+D

In other words, the order in which the matrices are added does
not matter. A similar remark applies to sums of five (or more)
matrices.
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Properties 5 and 6 in Theorem 2.1.1 are called distributive
laws for scalar multiplication, and they extend to sums of more than
two terms. For example,

k(A+ B—C)=kA+ kB —kC
(k+p—m)A=kA+pA—mA

Similar observations hold for more than three summands. These
facts, together with properties 7 and 8, enable us to simplify
expressions by collecting like terms, expanding, and taking common
factors in exactly the same way that algebraic expressions involving
variables and real numbers are manipulated. The following example
illustrates these techniques.

Example 2.1.8

Simplify
2(A +3C) — 3(2C — B) — 3[2(2A + B — 4C) — 4(A — 2C)]
where A, B and C' are all matrices of the same size.

Solution:
The reduction proceeds as though A, B, and C were variables.

2(A +3C) — 3(2C — B) — 3[2(2A + B — AC) — 4(A — 20
=24 +6C — 6C + 3B — 3[4A + 2B — 8C — 44 + 8C
— 24+ 3B — 3[2B]
—24-3B
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-43

Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the
corresponding result for columns is derived in an analogous way,
essentially by replacing the word row by the word column
throughout. The following definition is made with such applications
in mind.

Definition 2.3 Transpose of a Matrix

If Aisan ™ X N matrix, the transpose of A, written
AT, is the 0 X 1 matrix whose rows are just the
columns of A in the same order.

In other words, the first row of AT is the first column of A (that is
it consists of the entries of column 1 in order). Similarly the second

row of AT is the second column of A, and so on.
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Example 2.1.9

Write down the transpose of each of the following
matrices.

1 1 2 31 -1
A=|3| B=[526] C=[34| D=| 13 2
2 5 6 -1 2 1
Solution:
X 1 3
ATt=]13 2], B"=|2]|,0"= ,and DT =D
6 2 4 6

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-17
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IfA= [aij] is a matrix, write AT = [bz-j]. Then bij is the jth
element of the %th row of AT and so is the Jth element of the 7th
column of A. This means bz'j = @, so the definition of AT can
be stated as follows:

@1 I A=la;], then AT = [aji).

This is wuseful in verifying the following properties of
transposition.

Theorem 2.1.2

Let A and B denote matrices of the same size, and let k
denote a scalar.

1. If Aisan ™ X T matrix, then Al isan7 X M
matrix.
2. (AT)T
(kA)T kAT
(A+B)T = AT + BT

Proof:

Property 1is part of the definition of AT, and Property 2 follows
from (2.1). As to Property 3: If A — aj, then kA = k‘aij, s0 (2.1)
gives

(]CA)T = [k;aji] =k [ajz-] = /{ZAT

Finally, if B = [bij], then A+ B = [cij] where

Cij = Q5 + bz’j Then (2.1) gives Property 4:
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(A+B)" = [ey]" = leil = lagi + bji] = [azi] + [bji] = AT + BT
There is another useful way to think of transposition. If
A=1Ja;;] is an MXMN matrix, the elements
aii, av2,Qass, . .. are called the main diagonal of A. Hence the
main diagonal extends down and to the right from the upper left
corner of the matrix A; it is shaded in the following examples:

ay ap arp a2 a3
ary ax o’ az; @  ax; ~
az; dx a3 i azy

asy asz asp a2 dss

Thus forming the transpose of a matrix A can be viewed as
“flipping” A about its main diagonal, or as “rotating” A through
180° about the line containing the main diagonal. This makes
Property 2 in Theorem~?? transparent.

Example 2.1.10

Solve for A if
T
1 2 2 3
T— =
s 1 1)) =] 23]
Solution:

Using Theorem 2.1.2, the left side of the equation is
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(QAT—S{_i TDT_Q(AT)T—?,[_i f :

Hence the equation becomes
1 -1 2 3
2‘4_3{2 1]_{—1 21
Thus

2 3 1 -1 5 0
2A:{—1 21*3[2 1}:l5 51’ *°

finally

5 0 10
A:%l5 5123[1 11'

Note that Example 2.1.10 can also be solved by first transposing
both sides, then solving for AT, and so obtaining A= (AT)T.
The reader should do this.

1 -1
_aans[} ]

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-39

1 2
2 5

that ) = DT. Such matrices are important; a matrix A is called

The matrix D = l 1 in Example 2.1.9 has the property

symmetric if A=AT a symmetric matrix A is necessarily
square (if A is 2 X N, then AT sn x m,so A = AT forces
1 = ). The name comes from the fact that these matrices exhibit
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a symmetry about the main diagonal. That is, entries that are
directly across the main diagonal from each other are equal.

a b c
For example, ¥ d e is symmetric when b= b/,
d e f

c=c ande = €.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-141

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-143

Example 2.1.11

If A and B are symmetric 72 X 7 matrices, show that
A + B is symmetric.
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Solution:
We have AT = A and BT = B, so, by Theorem 2.1.2, we
have (A-i—B)T = AT + BT = A+ B.Hence A + Biis

symmetric.

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-18

Example 2.1.12

Suppose a square matrix A satisfies A= QAT. Show
that necessarily A = (.

Solution:
If we iterate the given equation, Theorem 2.1.2 gives

A =247 = 2[247]" = 2[2(4T)7] =44
Subtracting A from both sides gives 3A =0, so

A=1(0)=0.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-142

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-30

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-31

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-44
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2.2 Matrix-Vector
Multiplication

Up to now we have used matrices to solve systems of linear
equations by manipulating the rows of the augmented matrix. In this
section we introduce a different way of describing linear systems
that makes more use of the coefficient matrix of the system and
leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the
plane with coordinates (al, az) and (b1, bg) are equal if and only
if@q; = byand ag = bo. Moreover, a similar condition applies to
points (al, as, ag) in space. We extend this idea as follows.

An ordered sequence (al, as, ..., an) of real numbers is
called an ordered M -tuple. The word “ordered” here reflects our
insistence that two ordered 7)-tuples are equal if and only if
corresponding entries are the same. In other words,

(a1,a2,...,a,) = (b1,be,...,b,) if and only if a; = by,as = bo,..., and a,, = by,.
Thus the ordered 2-tuples and 3-tuples are just the ordered pairs
and triples familiar from geometry.

Definition 2.4 The set of ordered  -tuples of real numbers

Let IR denote the set of all real numbers. The set of all
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ordered 7-tuples from IR has a special notation:

R"™ denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the 72-tuples in
1

R™: Asrows (71,72, ..., Ty) orcolumns | 72 |;

T'n
the notation we use depends on the context. In any event they are
called vectors or T -vectors and will be denoted using bold type
such as x or v. For example, an 70 X 70 matrix A will be written as
arow of columns:

A= [ a; ay --- an ] where a; denotes column j of A for each j.

If X and Y are two Ti-vectors in R", it is clear that their matrix
sum X + ¥ is also in R" as is the scalar multiple kx for any
real number k. We express this observation by saying that R"" is
closed under addition and scalar multiplication. In particular, all
the basic properties in Theorem 2.1.1 are true of these 7Tl-vectors.
These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the 1 X 1 zero
matrix is called the zero 71-vector in R" and, if X is an T1-vector,
the M -vector —X is called the negative X.

Of course, we have already encountered these Tl-vectors in
Section 1.3 as the solutions to systems of linear equations with 7
variables. In particular we defined the notion of a linear combination
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of vectors and showed that a linear combination of solutions to
a homogeneous system is again a solution. Clearly, a linear
combination of 72-vectors in R is again in R, a fact that we will
be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations
depend only on the coefficient matrix A and the column X of
variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the
equations as the “product” AX of the matrix A and the vector X.
This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our
attention throughout this book.

To motivate the definition of the “product” AX, consider first the
following system of two equations in three variables:

ari + bxo + cr3=0b;

@2 ad'xy +0xo+ o3 =0

X1
andletA:la, b Cll,xz To | :[511
a C

Y
xs3
denote the coefficient matrix, the variable matrix, and the constant
matrix, respectively. The system (2.2) can be expressed as a single
vector equation

a1+ bra+ cxs| | b
azy+bxe+xs| | b

which in turn can be written as follows:

ala ey ]2

o]
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Now observe that the vectors appearing on the left side are just
the columns

a b c
a] = a, ,a9 — b, s and ag = C/

of the coefficient matrix A. Hence the system (2.2) takes the form

23) T1a1 + T2az +x3a3 = b

This shows that the system (2.2) has a solution if and only if the
constant matrix b is a linear combination of the columns of A, and
that in this case the entries of the solution are the coefficients 11,
X9, and I3 in this linear combination.

Moreover, this holds in general. If A is any 772 X 7 matrix, it
is often convenient to view A as a row of columns. That is, if

aj,as,...,a,are the columns of A, we write
A = [ a]. a2 oo an i|
and say that A = [ ay az -+ Qp } is given in terms

of its columns.
Now consider any system of linear equations with 7% X 70
coefficient matrix A. If b is the constant matrix of the system, and
1

)
ifx =

In
is the matrix of variables then, exactly as above, the system can be

written as a single vector equation
24) Tia1 +T2az + - +xpa, =b

Example 2.2.1

Write the system
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3r1+ 229 —4x3= 0
r1—3r2+ 3= 3
o — 5:173 =-1

in the form given in (2.4).

Solution:
3 2 —4 0
1| 1 | +a22| =3 | +x3 1| = 3
0 1 —5 —1

As mentioned above, we view the left side of (2.4) as the product of
the matrix A and the vector X. This basic idea is formalized in the
following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A = [ ai as -+ ap ]beanmxn
matrix, written in terms of its columns &1, a9, . . . , &y If
L1
L2
X =
Ln

Matrix Algebra | 67



is any n-vector, the product AX is defined to be the 771
-vector given by:
Ax = zmar +zoaz + - + Tpan

In other words, if A is 772 X M and X is an T-vector, the product
AX is the linear combination of the columns of A where the
coefficients are the entries of X (in order).

Note that if A is an 72 X 7 matrix, the product AX is only
defined if X is an 72-vector and then the vector AX is an m-vector
because this is true of each column a; of A. But in this case the
system of linear equations with coefficient matrix A and constant
vector b takes the form of asingle matrix equation

Ax=Db
The following theorem combines Definition 2.5 and equation (2.4)
and summarizes the above discussion. Recall that a system of linear

equations is said to be consistent if it has at least one solution.

Theorem 2.2.1

1. Every system of linear equations has the form
Ax = b where A is the coefficient matrix, b is the
constant matrix, and X is the matrix of variables.

2. Thesystem AX = b is consistent if and only if b
is a linear combination of the columns of A.

3. Ifaj,as,...,a,arethe columns of A and if
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I

Z2
X = , then X is a solution to the linear

In
system Ax = bifand onlyif 1, Z9,...,Tyare
a solution of the vector equation
T1a; + 2282 + -+ + Tpa, = b

A system of linear equations in the form Ax = basin (1) of
Theorem 2.2.1 is said to be written in matrix form. This is a useful
way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system
Ax = b into the problem of expressing the constant matrix /3
as a linear combination of the columns of the coefficient matrix A
. Such a change in perspective is very useful because one approach
or the other may be better in a particular situation; the importance
of the theorem is that there is a choice.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-41

Example 2.2.2
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2 —1 3 5
fA = 0 2 —3 1 | and
-3 4 1 2
2
1
X = ,computeAX
0
-2
Solution:
By Definition 2.5:
2 -1 3 5 -7
Ax =2 0] +1 21 +0| -3 | —-2]|1]|= 0
-3 4 1 2 —6

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-40

Example 2.2.3

Given columns a1, &2, &3, and &4 in R‘)’, write
2a; — 3ay + Hag + ay in the form AX where A is a
matrix and X is a vector.
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Solution:
Here the column of coefficients is

2

Hence Definition 2.5 gives
Ax = 2a; — 3as + bag + ay
where A = [ a; az as a4 ] is the matrix with a{, a9

, A3, and &4 as its columns.

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-142

Example 2.2.4

LetAZ[al as as a4]bethe3><4
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Solution:

By Theorem 2.2.1, b is a linear combination of aj, a2, ag, and
ay if and only if the system AX = b is consistent (that is, it has
a solution). So in each case we carry the augmented matrix [A|b] of
the system Ax = b to reduced form.

1. Here
2 1 3 3|1 10 2 110
01 -1 12| =101 -1 1|0 |,s0
-1 1 -3 03 00 001
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the system Ax = b has no solution in this case. Hence b is
\textit{not} a linear combination of a, a2, &3, and a4.
2. Now
2 1 3 3|4
01 -1 1|2
-1 1 =3 0]1
the system Ax = bis consistent.

1 0 2 111
— 10 1 —1 112 |,so0
0 0 0 00

Thus b is a linear combination of aj, Az, a3, and A4 in this
case. In fact the general solution is 17 =1 — 25 — ¢,
T9=24+s—1t x3=25, and x4 =t where S and t are

arbitrary parameters. Hence
4

xr1a1 + xoaz + x3a3 +xr4a4 = b = | 2
1

for any choice of s and t. If we take § = () and ¢ = (), this
becomes aj + 2a9 — b, whereas taking s = 1 = ¢ gives
—2a; +2as +a3+a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have )X = O for all
vectors X by Definition 2.5 because every column of the
zero matrix is zero. Similarly, AQ = O for all matrices A
because every entry of the zero vector is zero.
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Example 2.2.6

1 0 0
If ] = 0O 1 0O |,showthat Ix = X for any
0 0 1
vector X in R3.
Solution:
x1
fx = X9 | ,then Definition 2.5 gives
x3
1 0 0 xr1 0 0 Tl
Ix=z1| 0 |4xo | 1 |+23| 0 | = 0|4+ z2 |+ 0| =|ax2 | =x
0 0 1 0 0 T3 T3

The matrix [ in Example 2.2.6 is called the 3 %3 identity
matrix, and we will encounter such matrices again in future. Before
proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2
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Proof:

We prove (3); the other verifications are similar and are left as
exercises. Let A= [ ai az -+ ap ] and
B = [ by by --- b, ] be given in terms of their
columns. Since adding two matrices is the same as adding their
columns, we have

A+B=[a1+b1 ar+by .- an—i-bn]
T

x2
If we write X =

In
Definition 2.5 gives

(A+ B)x = z1(a1 + b1) + z2(az + ba) + - + zn(a, + by)
= (z1a1 + oy + - - - + xpay) + (x1by + x3bo + - - + z,,by,)
= Ax + Bx

Theorem 2.2.2 allows matrix-vector computations to be carried
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out much as in ordinary arithmetic. For example, for any 70 X T
matrices A and B and any 72-vectors X and ¥, we have:

A(2x — by) = 2Ax — 5Ay and (3A—T7B)x =3Ax—7Bx
We will use such manipulations throughout the book, often
without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a

system
Ax=Db
of linear equations. There is a related system
Ax =0

called the associated homogeneous system, obtained from the
original system Ax=Db by replacing all the constants by zeros.
Suppose X1 is a solution to Ax = b and X is a solution to
Ax = 0 (thatis Ax; = b and Axg = 0). Then x; + X is
another solution to AX = b. Indeed, Theorem 2.2.2 gives

A(X1+X0)=AX1+AX0=b—|—0=b

This observation has a useful converse.

Theorem 2.2.3

Suppose X is any particular solution to the system
Ax = b oflinear equations. Then every solution X9 to

Ax = b has the form
X9 = X + X1
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for some solution X() of the associated homogeneous
system Ax = 0.

Proof:
Suppose X9 is also a solution to Ax = b, so that Axo =Db
Write X7 = X9 — X1. Then X9 = Xy + X1 and, using
Theorem 2.2.2, we compute
AX():A(XQ—Xl) :AXQ—Axl =b—-b=0
Hence X() is a solution to the associated homogeneous system
Ax = 0.

Note that gaussian elimination provides one such representation.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-145

Example 2.2.7

Express every solution to the following system as the
sum of a specific solution plus a solution to the associated
homogeneous system.
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Solution:

Gaussian elimination gives 1 =4+ 25 —t,
T9 =24+ s+ 2t, x3 = S, and x4 = t where S and t are
arbitrary parameters. Hence the general solution can be written

x] 4425 -1 4 2 -1
a2+ s+ 2 1 2
=y | T s “lo T T o
T4 t 0 0 1
Thus
4
< = 2
o
0
is a particular solution (where s = () = t), and
2 —1
1 . .
X =S 1 +1 0 gives all solutions to the
0 1

associated homogeneous system. (To see why this is so, carry out
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the gaussian elimination again but with all the constants set equal
to zero.)

@ Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-47

The following useful result is included with no proof.

Theorem 2.2.4

Let AX = b be a system of equations with augmented
matrix [ A | b | writerank A = 7.

1. rank [ A | b } is either 7 or 7 + 1.

2. The system is consistent if and only if
rank[ A|b } =r.

3. The system is inconsistent if and only if

rank[A|b]:r—|—1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-
vector product AX because it requires that the columns of A be
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explicitly identified. There is another way to find such a product
which uses the matrix A as a whole with no reference to its
columns, and hence is useful in practice. The method depends on
the following notion.

Definition 2.6 Dot Product in

If(al, az, ..., an) and (bl, bg, 200 g bn) are two
ordered 11-tuples, their dot product is defined to be
the number

airby + azbs + - - - + anby,

obtained by multiplying corresponding entries and
adding the results.

To see how this relates to matrix products, let A denote a 3 X 4
matrix and let X be a 4-vector. Writing

1
ail a2 @13 a4
T2
X = and A= | a1 a9 as3z aou
3
as1 a3z G33 G34
T4

in the notation of Section 2.1, we compute
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Ax =

Ty
a1 12 13 ai4 P ary a2 a3
a1 a2 (23 a2 T | a1 | @2 | ax | +X3 | a3

azy az2 azz asq asi az2 as3

[ )

a4
+ x4 | a2
asq

(2171 + a22x2 + A23x3 + 2474

1121 + a1222 + a1323 + 1424
a3121 + az2x2 + a33r3 + azaxy

From this we see that each entry of AX is the dot product of the
corresponding row of A with X. This computation goes through in
general, and we record the result in Theorem 2.2.5.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https:/ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-42

Theorem 2.2.5 Dot Product Rule
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Let A be an 77 X 70 matrix and let X be an 7-vector.
Then each entry of the vector AX is the dot product of the
corresponding row of A with X.

This result is used extensively throughout linear algebra.

If Ais 7 X 7 and X is an Ty-vector, the computation of AX by
the dot product rule is simpler than using Definition 2.5 because the
computation can be carried out directly with no explicit reference
to the columns of A (as in Definition 2.5. The first entry of AX is
the dot product of row 1 of A with X. In hand calculations this is
computed by going across row one of A, going down the column
X, multiplying corresponding entries, and adding the results. The
other entries of AX are computed in the same way using the other
rows of A with the column X.

A X Ax In general, compute entry
of AX as follows (see the

o J - diagram):
( ) Go across row 7 of A and

. . down column X, multiply

row { entry i . .
corresponding entries, and add

the results.

As an illustration, we rework Example 2.2.2 using the dot product

rule instead of Definition 2.5.

Example 2.2.8
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Solution:
The entries of AX are the dot products of the rows of A with X:

+ (-1 + 30 + 5(-2) -7
+ -1+ (=30 + 1(—2)}_[ O]
+ 1+ 0 +

—6

Of course, this agrees with the outcome in Example 2.2.2.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-46
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Example 2.2.9

Write the following system of linear equations in the
form Ax = b.
91 — X9 +2x3+ x4 —3x5= 8

T+ T2+ 3r3 — 04 + 225 = —2
-1 +x9 — 223+ —3x5= 0

Solution:

Write A= 1 1 3 -5 2 1,

X1
8 9
b = —2 |,and x — x3 |- Then the dot product rule
0 T4
T5
5x1 — T + 2:10—3 + x4 — 375
gives Ax = T1+ 9+ 313 —Dxa + 225 |, so the
—T1 + 19 — 273 — 3x5

entries of AX are the left sides of the equations in the linear
system. Hence the system becomes Ax = b because matrices are
equal if and only corresponding entries are equal.

@ An interactive H5P element has been excluded from this
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version of the text. You can view it online here:
https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#h5p-45

Example 2.2.10

If A is the zero M X T matrix, then AX = O for each
T -vector X.

Solution:
For each k, entry k of AX is the dot product of row k of A with
X, and this is zero because row k of A consists of zeros.

Definition 2.7 The Identity Matrix

Foreach > 2, the identity matrix [, is the
7 X T matrix with 1s on the main diagonal (upper left to
lower right), and zeros elsewhere.

The first few identity matrices are
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S O O =
o O = O
o = O O
_— o O O

In Example 2.2.6 we showed that /3X = X for each 3-vector X
using Definition 2.5. The following result shows that this holds in
general, and is the reason for the name.

Example 2.2.11

For each . > 2 we have [,,X = X for each 1-vector
xin R™

Solution:
I
We verify the case . = 4. Given the 4-vector x — T2
T3
T4

the dot product rule gives
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1 0 0 0 T x1+0+0+0 T

Lix = 01 00 T9 _ O+224+0+0 _ ) —
0010 xs 04+0+234+0 T3
00 01 T4 0+0+0+JJ4 T4

In general, [,,X = X because entry k of I,,x is the dot product
of row k of I,, with X, and row k of I}, has 1 in position k and zeros
elsewhere.

Example 2.2.12

Let A = [ a; ag - an ]beanym Xn
matrix with columns a1, a2, . . . , &y. If €; denotes
column ] of the 2 X 7 identity matrix [}, then
Aej = ajforeachy = 1,2,...,n.

Solution:
31
. t2
Write e =
tn

wheret; = 1,butt; = Oforallé # j. Then Theorem 2.2.5 gives

Aej:t1a1+~-~+tjaj+~~-+tnan:O+~~-+aj+~~~+O:aj

Example 2.2.12will be referred to later; for now we use it to prove:
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Theorem 2.2.6

Let A and B be M X M matrices. If AX = BX for all
X in Rn, then A = B.

Proof:
Write A= [ ai as -+ Ap } and
B = [ b; by --- b, ] and in terms of their columns.

It is enough to show that aj = b}, holds for all k. But we are
assuming that Aej, = Bey, which gives a = by by Example
2.2.12.

We have introduced matrix-vector multiplication as a new way
to think about systems of linear equations. But it has several other
uses as well. It turns out that many geometric operations can be
described using matrix multiplication, and we now investigate how
this happens. As a bonus, this description provides a geometric
“picture” of a matrix by revealing the effect on a vector when it is
multiplied by A. This “geometric view” of matrices is a fundamental
tool in understanding them.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an
M X N matrix, the product AX was defined for any 72-column
2 in R"™ as follows: If A = [ a; az -+ ayp ] where the
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a; are the columns of A, and if X = ) ,

Definition 2.5 reads

@5) Ax = x1a1 + 1082 + - + TpaA,

This was motivated as a way of describing systems of linear
equations with coefficient matrix A. Indeed every such system has
the form AX = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a
way of multiplying matrices in general, and then investigate matrix
algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic
is different in a number of ways.

Definition 2.9 Matrix Multiplication

Let A be an 70 X T matrix, let I3 be an 0 X K matrix,
andwrite: B = [ by bz -+ by ] where b is
column ] of B for each J. The product matrix A B is the
m X k matrix defined as follows:

AB=A[b; by -~ by |=[A4b; Aby --- Aby ]

Thus the product matrix A B is given in terms of its columns
Abq, Abs, ..., Ab,: Column 7 of AB is the matrix-vector
product Abj of A and the corresponding column bj of B. Note
that each such product Ab ;j makes sense by Definition 2.5 because
Ais™ X N and each bj is in R (since B has 7, rows). Note also
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that if BB is a column matrix, this definition reduces to Definition 2.5
for matrix-vector multiplication.

Given matrices A and B, Definition 2.9 and the above
computation give

A(BR) = | Aby Aby - Ab, |7=(AB)7

for all ¥ in R¥. We record this for reference.

Theorem 2.3.1

Let A be an M X 7 matrix and let Bbeann X k
matrix. Then the product matrix A B is 71 X Kk and
satisfies

A(BZ) = (AB)Z for all Z in RF

Here is an example of how to compute the product AB of two
matrices using Definition 2.9.

Example 2.3.1

2 3 5
Compute ABif A= |1 4 7
0 1 8

and
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™

Il
Sy 3 o
— N O

Solution:
The columns of B are
8 9
51 = 7 | and 52 = 2 |, so Definition 2.5 gives
6 1
2 3 5 8 67 2 35 9 29
A51{1 4 7] |:7][78‘| andAl;gll 4 7] {2]{24]
01 8 6 55 01 8 1 10
Hence Definition 2.9 above gives
67 29
AB = [ Aby A, ] — | 78
55 10

While Definition 2.9 is important, there is another way to
compute the matrix product A B that gives a way to calculate each
individual entry. In Section 2.2 we defined the dot product of two
N-tuples to be the sum of the products of corresponding entries.
We went on to show (Theorem 2.2.5) that if A is an 7% X 7 matrix
and T is an Ti-vector, then entry 4 of the product AZ is the dot
product of row ] of A with . This observation was called the
“dot product rule” for matrix-vector multiplication, and the next
theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2 Dot Product Rule

Let A and B be matrices of sizes 710 X T and 12 X k?,
respectively. Then the (7, j )-entry of A B is the dot
product of row % of A with column 7} of B.

Proof:
write B = [ by by --- by, ] in terms of its columns.

Then Ab is column J of AB for each j. Hence the (i, j)-entry

of AB is entry % of AZ; :, which is the dot product of row 7 of A
with Ej. This proves the theorem.

Thus to compute the (i, J ) -entry of AB, proceed as follows (see
the diagram):

Go across row ¢ of A, and down column j of B, multiply
corresponding entries, and add the results.

C AL <
row | column (i, j)-entry

Note that this requires that the rows of A must be the same
length as the columns of /3. The following rule is useful for
remembering this and for deciding the size of the product matrix

AB.
Compatibility Rule
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Let A and B denote matrices. If Ais ™ X Nand Bisn' X k
, the product A B can be formed if and only if 7. = n/.In this case
the size of the product matrix A B is M X k ,and we say that A B
is defined, or that A and B are compatible for multiplication.

A B

m x X k

The diagram provides a useful mnemonic for remembering this.
We adopt the following convention:

Whenever a product of matrices is written, it is tacitly assumed
that the sizes of the factors are such that the product is defined.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-49

To illustrate the dot product rule, we recompute the matrix product
in Example 2.3.1.

Example 2.3.3

Matrix Algebra | 93



2 3 5
Compute ABif A = 1 4 7
0 1 8
8 9
andB= | 7 2
6 1
Solution:

Here Ais 3 X 3and Bis 3 X 2, so the product matrix AB is
defined and will be of size 3 X 2. Theorem 2.3.2 gives each entry
of AB as the dot product of the corresponding row of A with the
corresponding column of Bj that s,

2 35 8 9 2:843-7+5-6 2-9+3-2+5-1 67 29
AB=|1 4 7 7 2|=| 18447476 1-94+4-247-1 | =|T78 24
018 6 1

0-8+1-7+8-6 0-9+1-2+8-1 55 10

Of course, this agrees with Example 2.3.1.

Example 2.34

Compute the (1, 3)— and (2, 4)—entries of AB where
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Solution:

The (1, 3)—entry of AB is the dot product of row 1 of A and
column 3 of B (highlighted in the following display), computed by
multiplying corresponding entries and adding the results.

2 1 0
7= ” BB B S

-1 8

0
Similarly, the (2,4)—entry of AB involves row 2 of A and
column 4 of B.

3 1 2 2 1 6
02 3 2, 4)- =0-0+1-44+4-8=36
[—] e (2, 4)-entry =0-0+1-4+

Since Ais2 X 3and Bis 3 X 4, the productis 2 X 4.

w-[3 1]

0 1 4

= O N
SN =
ot W D

2_ 41 25 12
o | L1223 36

- An interactive H5P element has been excluded
(]
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B\ from this version of the text. You can view it
online here:
https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-37

Example 2.3.5

5
IfA:[ 1 3 2]andB: 6 ,computeA2
4
,AB, BA, and B? when they are defined.

Solution:
Here, Aisa 1 X 3 matrixand Bisa 3 X 1 matrix, so A2 and
B? are not defined. However, the compatibility rule reads

A B 1
1x3 3x1 % 3x1 1x3

so both AB and B A can be formed and these are 1 X 1 and
3x3 matrices, respectively.

5
AB=[1 3 2]|6|=[1-5+3-6+2-4]=31]
4
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5 5-1 5-3 5-2 5 15 10
BA=16|[13 2]=|6-16-3 6-2|=|6 18 12
4 4-1 4.3 4.2 4 12 8

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-50

Unlike numerical multiplication, matrix products AB and B A
need not be equal. In fact they need not even be the same size,
as Example 2.3.5 shows. It turns out to be rare that AB = BA
(although it is by no means impossible), and A and B are said to
commute when this happens.

@ Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-48
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Example 2.3.6

LetAZZ[ ¢ Q]andB:{ 1 21.

Compute A , AB, BA.

Solution:

6 9 6 9 0 0
2 _ —
R I R
A? = (0 can occur even if A # 0. Next,
6 9 1 2 -3 12
AB_{—ZL —6][—1 0]_l 2—8]
1 2 6 9 -2 -3
BA_{—l O}{—LL —6]_l—6 —91

Hence AB 7& BA, even though AB and B A are the same

size.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-27
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Example 2.3.7

If A is any matrix, then /A = Aand Al = A, and
where I denotes an identity matrix of a size so that the
multiplications are defined.

Solution:

These both follow from the dot product rule as the reader should
verify. For a more formal proof, write
A= [ ap ds --- dap } where Eij is columnj of A. Then
Definition 2.9 and Example 2.2.1 give

IA:[Id'l Ids - Ic?n]:[al as - an]:A

If é}- denotes column 7 of I, then Aé} = C_L'j for each 7 by
Example 2.2.12. Hence Definition 2.9 gives:

AT=A[& & - & |=[Aa A& - A, |=[a d@ - d|=A

The following theorem collects several results about matrix
multiplication that are used everywhere in linear algebra.

Theorem 2.3.3

Assume that @ is any scalar, and that A, B ,and C are
matrices of sizes such that the indicated matrix products
are defined. Then:
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Proof:
Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave
(3) and (5) as exercises.

L1C = [ ¢y Co -+ Ck ] in terms of its columns, then

BC = [ B¢, Bé, -+ Bgeg ]by Definition 2.9, so

A(BC) = | A(B&) A(B&) --- A(Bd) | Definition 2.9
= [ (AB)& (AB)& -+ (AB)&) ]  Theorem 2.3.1
= (AB)C Definition 2.9

4. We know (Theorem 2.2) that (B + C)¥ = BZ + CZ
holds for every column T. If we write
A= [ ap as -+ dp ] in terms of its columns, we get
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(B+C)A = [ (B+C)a (B+C)ay - (B+0O)in | Definition 2.9

= [ Ba1+Ca Baxa+Cady --- Bi,+Ci, | Theorem 2.2.2
= [ Ba, Bds --- Ba, } + [ Ca, Cdy --- Cay, } Adding Columns
= BA+CA Definition 2.9

6. As in Section 2.1, write A = [a;;] and B = [bw] so that
AT = [a ]and BT = [b/ ]Wherea ij = @j;and b = b;j
f TAT
orall ¢ and 7 If ¢;j denotes the (Z j) -entry of B then Cij
is the dot product of row % of BT with column j of AT . Hence

/ ! / ! / !
Cij = bjpay; + bigag; + - + Vi@ = briajn + baiajo + - + bmiajm

= aj1bii + ajoboi + - + ajmbmi

But this is the dot product of row j of A with column % of B;
that s, the (7, 7 )-entry of A B; that is, the (4, 7 )-entry of (AB)T
. This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix
multiplication. It asserts that the equation A(B C ) = (AB )C
holds for all matrices (if the products are defined). Hence this
product is the same no matter how it is formed, and so is written
simply as ABC. This extends: The product ABCD of four
matrices can be formed several ways—for example, (AB ) (C D)
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, [A(B C )]D, and A[B ( CD )] —but the associative law implies
that they are all equal and so are written as ABCD. A similar
remark applies in general: Matrix products can be written
unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be
taken: The fact that AB and B A need not be equal means that
the order of the factors is important in a product of matrices. For

example ABCD and ADCB may not be equal.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-24

Warning:
If the order of the factors in a product of matrices is changed, the
product matrix may change (or may not be defined). Ignoring this
warning is a source of many errors by students of linear algebra!'}
Properties 3 and 4 in Theorem 2.3.3 are called distributive laws.

They assert that A(B+C)=AB+ AC and
(B + C)A — BA + CA hold whenever the sums and

products are defined. These rules extend to more than two terms
and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

A(2B —3C + D —5E) = 2AB — 3AC + AD — 5AE
(A+3C —2D)B = AB +3CB — 2DB

Note again that the warning is in effect: For example
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A(B — C) need not equal AB — CA. These rules make

possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression

A(BC — CD) + A(C — B)D — AB(C — D)

Solution:

A(BC — CD) + A(C — B)D — AB(C — D) = A(BC) — A(CD) + (AC — AB)D — (AB)C + (AB)D
= ABC — ACD + ACD — ABD — ABC + ABD
=0

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-25

Example 2.3.9 and Example 2.3.10 below show how we can use
the properties in Theorem 2.3.2to deduce other facts about matrix
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multiplication. Matrices A and B are said to commute if

AB = BA.

Example 2.3.9

Suppose that A, B, and (' are @ X 70 matrices and that
both A and B commute with C; that is, AC' = (' A and
BC' = CB. show that AB commutes with C'.

Solution:

Showing that AB commutes with (' means verifying that
(AB )C =C (AB ) The computation uses the associative law
several times, as well as the given facts that AC = CA and

BC =0CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB)

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-146

Example 2.3.10
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Show that AB = B A if and only if
(A— B)(A+ B) = A — B2

Solution:
The following always holds:

(2.6)
(A-B)(A+B)=A(A+B)—B(A+B)=A?>+ AB— BA— B?
Hence if AB = BA, then

(A—B)(A+ B) = A2 — B? follows. Conversely, if this
last equation holds, then equation (2.6 becomes
A?* - B*= A+ AB - BA - B?
This gives 0=AB — BA, and AB = B A follows.
In Section 2.2 we saw (in Theorem 2.2.1 ) that every system of
linear equations has the form
AZ =1
where A is the coefficient matrix, T is the column of variables,
and b is the constant matrix. Thus the system of linear equations
becomes a single matrix equation. Matrix multiplication can yield
information about such a system.

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-26

Example 2.3.11
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Consider a system AT = b oflinear equations where
A'isan M X 1 matrix. Assume that a matrix (' exists

such that C' A = [,,. If the system AT = b hasa

solution, show that this solution must be Cb.Givea

condition guaranteeing that Chisin fact a solution.

Solution:
Suppose that T is any solution to the system, so that A =0

. Multiply both sides of this matrix equation by (' to obtain,
successively,

C(AZ)=Cb, (CA)Z=Cbh, I,#=Ch, #=Cb
This shows that if the system has a solution I, then that solution

must be T = Cb), as required. But it does not guarantee that the

system has a solution. However, if we write 1 = (C'b, then

Ay = A(Ch) = (AC)b
Thus 7'y = C'b will be a solution if the condition AC' = I, is
satisfied.
The ideas in Example 2.3.11 lead to important information about
matrices; this will be pursued in the next section.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-38
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2.4 Matrix Inverse

Three basic operations on matrices, addition, multiplication, and
subtraction, are analogs for matrices of the same operations for
numbers. In this section we introduce the matrix analog of
numerical division.

To begin, consider how a numerical equation A = b is solved
when @ and b are known numbers. If @ = (), there is no solution
(unless b= 0). But if @ 75 0, we can multiply both sides by the

inverse a_l = % to obtain the solution T = a_lb. Of course
multiplying by alis just dividing by @, and the property of a !
that makes this work is that (1,_1

Section~?? that the role that 1 plays in arithmetic is played in matrix

a = 1. Moreover, we saw in

algebra by the identity matrix /. This suggests the following
definition.

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of
A if and only if
AB=1 and BA=1
A matrix A that has an inverse is called an
invertible matrix.

Note that only square matrices have inverses. Even though it is
plausible that nonsquare matrices A and B could exist such that
AB =1,, and BA =1,, where A is M XN and B is
1 X M, we claim that this forces 77 = M. Indeed, if T < N

there exists a nonzero column & such that A7 = () (by Theorem

Matrix Algebra | 107



131), so & = I,@ = (BA)Z = B(AZ) = B(0) =0, a
contradiction. Hence 10 2> n. Similarly, the condition AB =1,
implies that 72 > 1. Hence M = N, so A is square.}

Example 2.4.1

Show that B = [ _1 (1)
is an inverse of A = l (1) 1

Solution:

Compute AB and BA.

=[]0 0] ma= [ R0 4] [0 0]

Hence AB=1=10B A, so B is indeed an inverse of A.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-147
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Example 2.4.2

Show that 4 = [ (1) g ]

has no inverse.

Solution:

LetB:lCCL 21

denote an arbitrary 2 X 2 matrix. Then

0 0 a b 0 0
AB_ll 3Hc d]_la—ki’)c b+3d
so A B has a row of zeros. Hence A B cannot equal [ for any B

The argument in Example 2.4.2 shows that no zero matrix has an
inverse. But Example 2.4.2 also shows that, unlike arithmetic, it is
possible for a nonzero matrix to have no inverse. However, if a matrix
does have an inverse, it has only one.

Theorem 2.4.1

If B and C are both inverses of A, then B = C.
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Proof:
Since B and (' are both inverses of A, we have
CA =1 = AB.Hence
B=IB=(CA)B=C(AB)=CI=C
If A is an invertible matrix, the (unique) inverse of A is denoted
A~! Hence A™1 (when it exists) is a square matrix of the same
size as A with the property that
AA™ =T and A'A=1T
These equations characterize A linthe following sense:
Inverse Criterion: If somehow a matrix /3 can be found such that
AB = [ and BA = I,then Aisinvertible and B is the inverse
of A;in symbols, B = A_l.}
This is a way to verify that the inverse of a matrix exists. Example
2.3.3 and Example 2.3 .4 offer illustrations.

Example 2.4.3

IfA = [ (1] _1 ],showthatA?’ = [ and so find
AL
Solution:

0 —1 0 -1 -1 1
2 __ _
WehaveA—l1 _11l1 _11—l 1 01

,and so

5 o, [-1 1770 =17 [10]_
A_AA_[A 0“1—11‘[01 =1
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Hence A3 =7 , as asserted. This can be written as
A2A =1 = AAQ, so it shows that A2 is the inverse of A. That
-1 1
s —1 2
is, ATC = A% = .
{ -1 0

The next example presents a useful formula for the inverse of

a2 X 2 matrix A = l a
c d
define the determinant det A and the adjugate adj A

of the matrix A as follows:

1 when it exists. To state it, we

det{z b]:ad—bc, and adj[a b]:[_d _b]

Example 2.4.4

a b

IfA =
4 l c d
only if det A # (), and in this case

_ 1 :
A7l = deAad]A

, show that A has an inverse if and

Solution:
For convenience, write € — detA = ad — bc and

BzadeZl d _bl.Then AB =el = BA as

—C a

the reader can verify. So if € 75 0, scalar multiplication by - gives
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Hence A is invertible and A_l = %B . Thus it remains only to
show that if A~ exists, then e # 0.

We prove this by showing that assuming € = () leads to a
contradiction. In fact, if € = (), then AB =el = 0, so left
multiplication by A1 gives A'AB = A‘l(); that is,
IB = 0, so B = (). But this implies that a, b, C, and d are
all zero, so A = (), contrary to the assumption that A1 exists.

As an illustration, if A = _g ;l
then detA=2-8—4- (—3) = 28 75 0. Hence A is
invertible and A_l = d;ﬁAade = % |: 2 _;l 1, as the

reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any
square matrix, and the conclusions in Example 2.4.4 will be proved
in full generality.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-51

Inverse and Linear systems

Matrix inverses can be used to solve certain systems of linear
equations. Recall that a system of linear equations can be written
as a $ingle matrix equation
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where A and b are known and & is to be determined. If A is
invertible, we multiply each side of the equation on the left by A1

to get
A 1Az = A 1%
It =A%

— A1

This gives the solution to the system of equations (the reader

should verify that r=A" 1b really does satisfy )
Furthermore, the argument shows that if T is anysolutlon, then

necessarily T = A_lb, so the solution is unique. Of course the
technique works only when the coefficient matrix A has an inverse.
This proves Theorem 2.4.2.

Theorem 2.4.2

Suppose a system of 70 equations in 72 variables is
written in matrix form as

ArX =0
If the I X M coefficient matrix A is invertible, the

system has the unique solution

7=A1p
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Example 2.4.5

Use Example 2.4.4 to solve the system

{5%1 — 3:172 =—4

Trx1+4x0= &
Solution:
. A= _T 5 —3
In matrix form this is AZ = b where A = 7 4|
L Ty | - -
T = 1 , and b= 4 . Then
€T9 8

detA=5-4— (—3) -7T=41, so A is invertible and

4 3
— 1
A1_41_—7 5]

by Example 2.4.4. Thus Theorem 2.4.2 gives

. 1 43)[-4] 1] 8
S _
T=4 b_41[—7 5” 8] 41[681

so the solutionis 1 = % and 9 = %
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An interactive H5P element has been

excluded from this version of the text.

You can view it online here:
hteps://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#hsp-19

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-20

An inversion method

If a matrix A is 7 X T and invertible, it is desirable to have an
efficient technique for finding the inverse. The following procedure
will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a
sequence of elementary row operations that carry A to the
identity matrix / of the same size, written A — /. This
same series of row operations carries I to A_l; that is,

I — A1 The algorithm can be summarized as follows:
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[A I]=[1 A]

where the row operations on A and I are carried out
simultaneously.

Example 2.4.6

Use the inversion algorithm to find the inverse of the

matrix
2 7 1
A=|1 4 -1
1 3 0
Solution:

Apply elementary row operations to the double matrix

2 7 1[10 0
[A IT]=|14 -1/0 10
13 0/00 1

so as to carry A to . First interchange rows 1and 2.
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e
IJUEEN I
S = =
o = O
o O =
_ o O

Next subtract 2 times row 1 from row 2, and subtract row 1 from

row 3.

1 4 =110 10
0 -1 3|1 -2 O
0 -1 110 -1 1

Continue to reduced row-echelon form.

1 0 11| 4 -7 0
01 -3|-1 2 0
0 0 —2|-1 11

-3 -3 11
1 1 -3
0O 1 0 5 5 5
1 —1 —1
-3 =3 11
Hence A_l :% 1 1 —3 |,asisreadily verified.
1 -1 -1

Given any 7 X T matrix A, Theorem 1.2.1 shows that A can be
carried by elementary row operations to a matrix R in reduced
row-echelon form. If 2 = I, the matrix A is invertible (this will
be proved in the next section), so the algorithm produces AL
R 7é I, then R has a row of zeros (it is square), so no system of
linear equations A = b canhave a unique solution. But then A is
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not invertible by Theorem 2.4.2. Hence, the algorithm is effective in
the sense conveyed in Theorem 2.4.3.

Theorem 2.4.3

If Aisan? X M matrix, either A can be reduced to 1
by elementary row operations or it cannot. In the
first case, the algorithm produces A_l; in the second case,
A~ does not exist.

An interactive H5P element has been

excluded from this version of the text.

You can view it online here:
hteps://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#hsp-21

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-53
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Properties of inverses

The following properties of an invertible matrix are used
everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:
1.1t AB = AC then B = C.
21 BA=CA, then B =2C.

Solution:

Given the equation AB = AC, left multiply both sides by
AL to obtain A_lAB = A_lAC. Thus I B = I, thatis
B = (. This proves (1) and the proof of (2) is left to the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that
an invertible matrix can be “left cancelled” and “right cancelled”,
respectively. Note however that “mixed” cancellation does not hold
in general: If A is invertible and AB = (A, then B and C may
10t be equal, even if both are 2 X 2. Hereisa specific example:

11 0 0 11
A= , B= ,C =
0 1 1 2 1 1
Sometimes the inverse of a matrix is given by a formula. Example
2.4.4 is one illustration; Example 2.4.8 and Example 2.4.9 provide two
more. The idea is the Inverse Criterion: If a matrix B can

be found such that AB =1 = B A, then A is invertible and
A"l =B
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Example 2.4.8

If A is an invertible matrix, show that the transpose AT
is also invertible. Show further that the inverse of A7 is
just the transpose of A_l; in symbols,

(AT)—l — (A—l)T‘

Solution:

A7 exists (by assumption). Its transpose (A_l)T is the
candidate proposed for the inverse of AT. Using the inverse
criterion, we test it as follows:

AT(A—l)T: (A—lA)T:IT:I
(A—I)TAT: (AA—l)T:IT:I

Hence (A_I)T is indeed the inverse of AT; that is,
(AT)—l — (A—I)T.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-22
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Example 2.4.9

If A and B are invertible 72 X 7 matrices, show that
their product A B is also invertible and

(AB)"l =B714a71

Solution:
We are given a candidate for the inverse of AB, namely
Bt A1 we test it as follows:

(B'A™YAB) =B YA 'AB=B"'IB=B'B=1
(AB)(B'A™ )Y = ABB YA 1 = ATA ' = AA =T

Hence B_IA_1 is the inverse of AB: in symbols,
(AB)"' = B~1A~1

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-52

We now collect several basic properties of matrix inverses for
reference.
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Theorem 2.4.4

All the following matrices are square matrices of the
same size.

1. I isinvertibleand [ ~! = T.

2.1f A is invertible, sois A1, and (A_l)_l = A

3.1f A and B are invertible, so is A B, and
(AB)"! = B-14-1

4.1f Ay, Ao, ..., Ay} are all invertible, so is their
product A1 Ag - - - Ay, and

(A1 Ay Ap) b= At AT AT

5.1f Ais invertible, so is Ak for any k > 1, and
(Ak)—l — (A—l)k.

6.1If A is invertible and @ # () is a number, then a.A is
invertible and (aA)_l =11

~ a
7.1t Ais invertible, so is its transpose AT, and

(AT)—l — (A—l)T‘

Proof:
1. This is an immediate consequence of the fact that I’=1 .

2. The equations AA™Y =T = A1 A show that A is the
inverse of A~ 1; in symbols, (A_l)_l = A

3. This is Example 2.4.9.

4. Use induction on k. If k = 1, there is nothing to prove, and if
k = 2, the result is property 3. If k > 2, assume inductively that
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(AjAg -+ A1)t = At - A7 AT We apply this
fact together with property 3 as follows:

[A1Ag - Ap 1 A = [(A1Ag - Ag_y) A
At (A Ay A )]
A (AL - ATATY)

So the proof by induction is complete.

5. This is property 4 with A} = Ay = --- = A = A.

6. The readers are invited to verify it.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and
4 of Theorem 2.4.4 is a consequence of the fact that matrix
multiplication is not
commutative. Another manifestation of this comes when matrix
equations are dealt with. If a matrix equation B = (' is given,
it can be left-multiplied by a matrix A to yield AB = AC.
Similarly, 7ight-multiplication gives BA = (' A. However,
we cannot mix the two: If B = (' , it need notbe the case that
AB=CA even if A is invertible, for example,
A:ll 1]’32{0 O]:C.

0 1 1 0

Part 7 of Theorem 2.4.4 together with the fact that (AT)T =A

gives

Corollary 2.4.1

Matrix Algebra | 123



A square matrix A is invertible if and only if AT s
invertible.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=66#h5p-23

Example 2.4.10

Find A if (AT — 217! = [ _f (1) 1

Solution:
By Theorem 2.4.2 (2) and Example 2.4.4, we have

ar=an [ -an”) = [ 4] [0 3]

0 —1 2 -1
T _
Hence A—2[—|—|:1 Ql—ll 4], SO
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N

by Theorem 2.4.4(7).

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-55

The following important theorem collects a number of conditions all
equivalent to invertibility. It will be referred to frequently below.

Theorem 2.4.5 Inverse Theorem

The following conditions are equivalent for an 72 X 70
matrix A:

1. A is invertible.

2. The homogeneous system AZ = 0 has only the

trivial solution & = 0.

3. A can be carried to the identity matrix I, by
elementary row operations.
—
4. The system AZ = b has at least one solution & for

=
every choice of column b.

5. There exists an 72 X 7 matrix (' such that
AC =1,
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Proof:

We show that each of these conditions implies the next, and that
(5) implies (1).

1 = @ If A1 exists, then AT = 0 gives
f=1,F=A1AF=A"10=0.

(2) = (3). Assume that (2) is true. Certainly A — F by row
operations where R is a reduced, row-echelon matrix. It suffices
to show that £ = I,,. Suppose that this is not the case. Then R
has a row of zeros (being square). Now consider the augmented
matrix [ A ’ 0 } of the system AT = 0. Then
[ A ‘ 6} — [ R\G] is the reduced form, and [ R‘(j}
also has a row of zeros. Since I is square there must be at least one
nonleading variable, and hence at least one parameter. Hence the
system Ar = 6 has infinitely many solutions, contrary to (2). So
R = I, after all.

(3) = (4). Consider the augmented matrix [ A ‘ l_; ] of the

system Ar¥ =b. Using (3), let A— 1, by a sequence of row
operations. Then these same operations carry

[ A ‘ g ] — [ I, ‘ c } for some column €. Hence the system

AX = b has a solution (in fact unique) by gaussian elimination.

This proves (4).

@ = (5. Write [, = [ €1 €y -+ €, } where
51,52, .. .,gn are the columns of [,. For each \newline
7 =1,2,...,n, the system AT = e_} has a solution 6} by
@),s0 ACj = €j.NowletC' = [ Ci Co -+ Cp ]bethe

1 X M matrix with these matrices 57‘ as its columns. Then
Definition 2.9 gives (5):
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AC=A[& & - & |=[Aa A& - AG |=[& & - & |=I

(5) — (1). Assume that (5) is true so that AC = I, for some
matrix (. Then CZ =0 implies =0 (because
=1, =ACx = A6 = 6). Thus condition (2) holds for
the matrix ( rather than A. Hence the argument above that (2) —
(3) — (4) — (5) (with A replaced by C ) shows that a matrix C’
exists such that CC’ = [, n- But then

A= AL, = A(CC') = (AC)C' = I,C' = C'

Thus CA = CC’ = 1, which, together with AC = 1. ,
shows that (' is the inverse of A. This proves (1).

The proof of (5) — (1) in Theorem 2.4.5 shows that if AC =1
for square matrices, then necessarily CA=1 , and hence that C
and A are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If A and C are square matrices such that AC =1,
thenalso CA = I.In particular, both A and C are
invertible, C' = A_l, and A =C L.

Here is a quick way to remember Corollary 2.4.1. If A is a square
matrix, then

1L1fAC = I thenC = A_l.
21CA=TthenC = AL,

Observe that Corollary 2.4.1 is false if A and C' are not square
matrices. For example, we have
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In fact, it can be verified that if AB = I,,, and BA = I,
where A is M X M and B is ™ X M, then ™ = 7 and A and
B are (square) inverses of each other.

An 0 X N matrix A has rankn if and only if (3) of Theorem
2.4.5 holds. Hence

Corollary 2.4.2

An 70 X 1 matrix A is invertible if and only if
rankA = n.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-54
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-148
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3. Determinants and
Diagonalization

Introduction

With each square matrix we can calculate a number, called the
determinant of the matrix, which tells us whether or not the matrix
is invertible. In fact, determinants can be used to give a formula
for the inverse of a matrix. They also arise in calculating certain
numbers (called eigenvalues) associated with the matrix. These
eigenvalues are essential to a technique called diagonalization that
is used in many applications where it is desired to predict the future
behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term
“determinant” was first used in 1801 by Gauss is his Disquisitiones
Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in
the eighteenth and nineteenth centuries, primarily because of their
significance in geometry. Although they are somewhat less
important today, determinants still play a role in the theory and
application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4, we defined the determinant of a 2 X 2 matrix
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a b
=[]
as follows:

detA = ' = ad — bc

b
d

a
C

and showed (in Example 2.4.4) that A has an inverse if and only
if det A 75 (0. One objective of this chapter is to do this for any
square matrix A. There is no difficulty for 1 X 1 matrices: If
A = [a)], we define det A = det [a] = a and note that A is
invertible if and only if @ 7 0.

if Ais 3 X 3 and invertible, we look for a suitable definition
of detA by trying to carry A to the identity matrix by row
operations. The first column is not zero (A is invertible); suppose
the (1, 1)-entry @ is not zero. Then row operations give

@ Q. 2
> o o

c a b ¢ a b c a b c
e f | —=|ad ae af | > |0 ae—bd af—cd | =|0 u af —cd
i ag ah ai 0 ah—bg ai—cg 0 v ai—cg

where % = ae —bd and v = ah — bg. Since A is
invertible, one of U and ¥ is nonzero (by Example 2.4.11); suppose
that 4 7 (. Then the reduction proceeds
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w = u(ai — cg) —v(af — cd) = a(aei + bfg + cdh — ceg — afh — bdi)
. We define
@1 detA =aei+bfg+ cdh —ceg—afh —bdi
and observe that detA # 0 because detA = w # 0 (is

invertible).

To motivate the definition below, collect the terms in Equation 3.1
involving the entries @, b, and Cin row 1 of A:

a b c
detA=|d e f|=aei+bfg+ cdh—ceg—afh— bdi
g h 1
=a(ei — fh) —b(di — fg) + c(dh — eg)
_ e f| ,|d f d e
Yo b‘g i | g h

This last expression can be described as follows: To compute the
determinant of a 3 X 3 matrix A, multiply each entry in row 1
by a sign times the determinant of the 2 X 2 matrix obtained by
deleting the row and column of that entry, and add the results. The
signs alternate down row 1, starting with . It is this observation
that we generalize below.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-28

Example 3.1.1

2 3 7
det | —4 0 6 =2‘g g‘—3|_‘f g‘+7‘ ‘fg’
150

= 2(—30) — 3(—6) + 7(—20)
=182

This suggests an inductive method of defining the determinant of
any square matrix in terms of determinants
of matrices one size smaller. The idea is to define determinants of
3 X 3 matrices in terms of determinants of 2 X 2 matrices,
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then we do 4 X 4 matrices in terms of 3 X 3 matrices, and so
on.
To describe this, we need some terminology.

Definition 3.1 Cofactors of a matrix

Assume that determinants of (n — 1) X (n — 1)
matrices have been defined. Given the 72 X 7 matrix A,
let

Aij denote the (n — 1) X (n — 1) matrix obtained
from A by deleting row ¢ and column j.

Then the (1, J)-cofactor ¢;; (A) is the scalar defined by
cij(A) = (=1)""det(Ay)

Here (— 1)i+j is called the sign of the (%, J)-position.

The sign of a position is clearly 1 or —1, and the following
diagram is useful for remembering it:
F 4 4 K
- + - +
+ - + -
-+ - 4+

Note that the signs alternate along each row and column with +
in the upper left corner.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-150

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and
(2, 3) in the following matrix.

3 -1 6
A=|5 27
8 9 4
Solution:
Here A79 is the matrix { 5 7 }
8 4
that remains when row 1 and column 2 are deleted. The sign of
position (1,2) is (—1)172 = —1 (this is also the (1, 2)-entry

in the sign diagram), so the (1, 2)—cofactor is
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cia(A) = (-1)'*?

- ‘ = (~1)(5-4—7-8) = (—1)(—36) = 36

Turning to position (3, 1), we find

() = (1P Aar = (-0 | T) 2 = (-7 12) = -19
Finally, the (2, 3)-cofactor is
exs(A4) = (-1 gy = (18| T T ‘ — (—1)(27+8) = -35

Clearly other cofactors can be found—there are nine in all, one for
each position in the matrix.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-57

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix
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Assume that determinants of (n — 1) X (n — 1)
matrices have been defined. If A = [a,-j] is X T define

detA = anci1(A) + arzci2(A) + - - - + aipcin(4)

This is called the cofactor expansion of det A along row
1

It asserts that det A can be computed by multiplying the entries
of row 1 by the corresponding
cofactors, and adding the results. The astonishing thing is that
detA can be computed by taking the cofactor expansion along
any row or columm: Simply multiply each entry of that row
or column by the corresponding cofactor and add.

Theorem 3.1.1 Cofactor Expansion Theorem

The determinant of an 72 X 7 matrix A can be
computed by using the cofactor expansion along any row or
column
of A. Thatis det A can be computed by multiplying each
entry of the row or column by the corresponding cofactor
and adding the results.

Example 3.1.3
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Compute the determinant of

3 4 5
A=1|11T7 2
9 8 -6

Solution:
The cofactor expansion along the first row is as follows:

detA = 3c11(A) + 4c12(A) + 5c13(A)

72 12 17
B —6‘_4|9 —6|+3‘9 8‘
— 3(—58) — 4(—24) + 5(—55)

— —353

Note that the signs alternate along the row (indeed along any
row or column). Now we compute detA by expanding along the
first column.

detA = 3011(A) + 1021(A) + 9631(A)

7 2| |4 5 45
K —6‘_|8 6 +9‘7 2‘
— 3(—58) — (—64) + 9(—27)
= —353

The reader is invited to verify that detA can be computed by
expanding along any other row or column.
The fact  that  the cofactor  expansion along
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any row or column of a matrix A always gives the same
result (the determinant of A) is remarkable, to say the least. The
choice of a particular row or column can simplify the calculation.

Example 3.14

Compute det A where
300 O
o 1 2 0
A= 2 6 0 -1
-6 3 1 O
Solution:

The first choice we must make is which row or column to use in
the
cofactor expansion. The expansion involves multiplying entries by
cofactors, so the work is minimized when the row or column
contains as
many zero entries as possible. Row 1 is a best choice in this matrix
(column 4 would do as well), and the expansion is
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detA = 3611(A) + 0cq9 (A) + 0013(14) + 0614<A)
1 2 0
=36 0 -1
3 1 0

This is the first stage of the calculation, and we have succeeded in
expressing the determinant of the 4 X 4 matrix A
in terms of the determinant of a 3 X 3 matrix. The next stage
involves
this 3 X 3 matrix. Again, we can use any row or column for the
cofactor
expansion. The third column is preferred (with two zeros), so

This completes the calculation.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-151

This example shows us that calculating a determinant is simplified
a great deal when a row or column consists mostly of zeros. (In fact,
when a row or column consists entirely of zeros, the determinant
is zero—simply expand along that row or column.) We did learn that
one method of creating zeros in a matrix is to apply elementary
row operations to it. Hence, a natural question to ask is what effect
such a row operation has on the determinant of the matrix. It turns
out that the effect is easy to determine and that elementary
column operations can be used in the same way. These
observations lead to a technique for evaluating determinants that
greatly reduces the labour involved. The necessary information is
given in Theorem 3.1.2.

Theorem 3.1.2

Let A denote an 70 X 7 matrix.

1. If Ahas a row or column of zeros, det A = ().
2. If two distinct rows (or columns) of A are
interchanged, the determinant of the resulting matrix

is —detA
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3. Ifarow (or column) of A is multiplied by a constant
1, the determinant of the resulting matrix is
u(detA).

4. Iftwo distinct rows (or columns) of A are identical,
detA = 0.

5. If amultiple of one row of A is added to a different
row (or if a multiple of a column is added to a
different column), the determinant of
the resulting matrix is det A.

The following four examples illustrate how Theorem 3.1.2 is used to
evaluate determinants.

Example 3.1.5

Evaluate det A when

1 -1 3
A=1|1 0 -1
2 1 6

Solution:

The matrix does have zero entries, so expansion along (say) the
second row would involve somewhat less work. However, a column
operation can be
used to get a zero in position (2, 3)—namely, add column 1 to
column 3. Because this does not change the value of the
determinant, we obtain
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1 -1 3 1 -1 4 14
detA=1|1 0 -1 |=]|1 0 0 :—‘ 1 8‘:12
2 1 6 2 1 8

where we expanded the second 3 X 3 matrix along row 2.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-58

Example 3.1.6

a b ¢
fdet | p q r | =6,
x Yy z
evaluate det A where
a+x b+y c+z
A= 3x 3y 3z
-p  —q T

Solution:

First take common factors out of rows 2 and 3.
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a+x b4+y c+z
detA = 3(—1)det x Yy z
p q r

Now subtract the second row from the first and interchange the
last two rows.

detA = —3det = 3det

N30
I
w
(=2}
|
—
oo

ST S
ESINSIISE
S R0
SIS
SSICSEIES

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-59

The determinant of a matrix is a sum of products of its entries.
In particular, if these entries are polynomials in X, then the
determinant itself is a polynomial in . It is often of interest to
determine which values of ' make the determinant zero, so it is
very useful if the determinant is given in factored form. Theorem
3.1.2 can help.

Example 3.1.7
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Find the values of & for which det A = 0, where

1 =z =z
A=z 1 =z
r x 1

Solution:
To evaluate detA, first subtract & times row 1 from rows 2 and
3.

1 T T
2
9 o| | 1-2° z—2
0 1—2* z—2°|= 9

detA =
0 z—a 9 r—2° 1l—x

8 8 =

8 =8

— 8 K
I

1—=x

At this stage we could simply evaluate the determinant (the result
is 223 — 322 + 1). But then we would have to factor this
polynomial to find the values of ' that make it zero. However, this
factorization can be obtained directly by first factoring each entry
in the determinant and taking a common
factor of (1 — 37) from each row.

1-z)(1+x) z(1—x) — (12 1+z =z
z(1—x) 1-2)1+=x) x 14z

=(1-xz)?2z+1)

detA =

Hence, detA = () means (1 — 2)(22 + 1) = 0, that is
r=1lorx = —

ST
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-56

Example 3.1.8

If a1, @2, and a3 are given show that

1 a; a%
det | 1 ay a3 | = (a3 —a1)(az —az)(ag —ay)
1 a3 a3

Solution:
Begin by subtracting row 1 from rows 2 and 3, and then expand
along column 1:
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2
2 asz —aip az—ay

1 a1 a% 1 a1 a% 4y — a1 a2 —a?

det | 1 az a2 | =det| 0 ax—a; a%—a? :{ 3 3
2

0 az3—a1 a3—aj

Now (CLQ — a1) and (a3 — a1) are common factors in rows 1
and 2, respectively, so

2
1 a1 a7

1
det | 1 ao a% = (a2 — a1)(ag — ay)det az + a1
5 1 az+ay
1 a3 a3

= (az — a1)(ag — a1)(as — az)

The matrix in Example 3.1.8 is called a Vandermonde matrix, and
the formula for its determinant can be generalized to the 72 X T
case.

If Aisan 7 X 7 matrix, forming %A means multiplying every
row of A by u. Applying property 3 of Theorem 3.1.2, we can take
the common factor U out of each row and so obtain the following
useful result.

Theoerem 3.1.3

If Ais an 10 X 70 matrix, then det(uA) = u"det A
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for any number U.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-149

The next example displays a type of matrix whose determinant is
easy to compute.

Example 3.1.9

Evaluate det A if
a 0 0 O
A= u b 0 0
v w ¢ 0
xr y z d
Solution:

Expand along row 1 to get detA = a . Now

< & o
N o O
2 oo

expand this along the top row to get
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detA = ab

c 0
= abcd, the product of the main

z d

diagonal entries.

A square matrix is called a lower triangular matrix
if all entries above the main diagonal are zero (as in Example 3.1.9).
Similarly, an Upper triangular matrix is one for which
all entries below the main diagonal are zero. A
triangular matrix is one that is either upper or lower
triangular. Theorem 3.14 gives an easy rule for calculating the
determinant of any triangular matrix.

Theorem 3.1.4

If A is a square triangular matrix, then det A is the
product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a
routine matter to carry a matrix to triangular form using row
operations.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-60
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived.
One consequence of these theorems is that a square matrix A is
invertible if and only if det A # (. Moreover, determinants are
used to give a formula for AL which, in turn, yields a formula
(called Cramer’s rule) for the
solution of any system of linear equations with an invertible
coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812)
about the determinant of a product of matrices.

Theorem 3.2.1 Product Theorem

If A and B are @ X T matrices, then

det(AB) = det AdetB.

The complexity of matrix multiplication makes the product theorem
quite unexpected. Here is an example where it reveals an important
numerical identity.

Example 3.2.1
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—b a

ac—bd  ad+ bc
—(ad+bc) ac—bd |
Hence det Adet B = det( AB) gives the identity

IfA:l @ b]andel € d]
—d c

then AB = l
(a® + b*)(c + d*) = (ac — bd)? + (ad + bc)?

Theorem 3.21 extends easily to

det(ABC') = det Adet BdetC'. n fact, induction gives

det(A1Ag - Ag_1Ax) = detArdetAy - - - det A _1det Ay,
for any square matrices Al, ceey A}, of the same size. In
particular, if each A; = A, we obtain

det(AF) = (detA)*, for any k > 1

We can now give the invertibility condition.

Theorem 3.2.2

An 70 X 1 matrix A is invertible if and only if
det A # (. When this is the case,
-1y _ _1
det(A™") = ===

Proof:
If A is invertible, then AA T =1 ; so the product theorem gives
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1 = detl = det(AA™Y) = det Adet A1

Hence, det A # () and also detA=1 = de%‘,A'
Conversely, if detA 75 0, we show that A can be carried to [
by elementary row operations (and invoke Theorem 2.4.5). Certainly,

A can be carried to its reduced row-echelon form R, SO
R = E} --- EyFE] A where the E; are elementary matrices
(Theorem 2.5.1). Hence the product theorem gives
detR = detFEy, - - - det Eydet E det A
Since detF # (O for all elementary matrices [, this shows
detR 75 0. In particular, R has no row of ZEeros, So R=1
because 1 is square and reduced row-echelon. This is what we
wanted.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm,/?p=70#h5p-61

Example 3.2.2

1 0 -—c
For which values of C does A — —1 3 1
0 2¢ —4

have an inverse?

Solution:
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Compute detA by first adding C times column 1 to column 3 and
then expanding along row 1.

1 0 —c 1 0 0
detA=det | -1 3 1 |=det| -1 3 1—c | =2(c+2)(c—3)
0 2¢ —4 0 2¢ -4

Hence, detA =0ifc = —2orc = 3, and A has an inverse
ifc # —2andc # 3.

Example 3.2.3

If a product Ay Ag - - - Ay, of square matrices is
invertible, show that each A; is invertible.

Solution:

We have det A1detAs - - - det Ay, = det(AlAQ e Ak)
by the product theorem, and det(AlAQ s Ak) 75 0 by

Theorem 3.2.2 because A1 Asg - - - Ay, is invertible. Hence
detAidetAs - --detAy # 0

sodet A; 7~ ( for each 7. This shows that each Aj; is invertible,
again by Theorem 3.2.2.

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=70#h5p-63

Theorem 3.2.3

If A is any square matrix, et AT = detA.

Proof:

Consider first the case of an elementary matrix F. If F is of type
lor I, then BT = E: so certainly detET = detE. 1t E is of
type 1II, then E7T is also of type 1II; so det EL = 1 = detE
by Theorem 3.1.2. Hence, detET = detE for every elementary
matrix F.

Now let A be any square matrix. If A is not invertible, then
neither is AT so det AT =0 = detA by Theorem 3.1.2. On
the other hand, if A is invertible, then A = F. --- FoF1,
where the [J; are elementary matrices (Theorem 2.5.2). Hence,
AT = ETE2 s E;{ so the product theorem gives

detAT = detET detEL ... detEL = detEydetE; - - - detE),
= detEk ce detEgdetEl
= detA

This completes the proof.
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Example 3.2.4

ifdetA = 2and detB = 5, calculate
det(A3B~1ATB?).

Solution:
We use several of the facts just derived.

det(A3B~ AT B?) = det(A%)det(B')det(AT)det(B?)
1

_ 3 2
= (detA) s det A(detB)
1
—923.2.9.52
)
= &0

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-62
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Example 3.2.5

A square matrix is called ort hogomnal if
A~1 = AT What are the possible values of det A if A
is orthogonal?

Solution:
If A is orthogonal, we have I = AAT Take determinants to
obtain

1 = det] = det(AAT) = det Adet AT = (detA)*
Since det A isa number, this means detA = +1.

Adjugates
In Section 24 we defined the adjugate of a 2 X 2 matrix
b
A= l C(L; d
. d —b
tobe adj(A) = e 4

Then we verified that A(adjA) = (detA)l = (adjA)A
and hence that, if det A 75 0, A_l = de%fA ade. We are now
able to define the adjugate of an arbitrary square matrix and to show

that this formula for the inverse remains valid (when the
inverse exists).

Recall that the (i, j)-cofactor ¢;;(A) of a square matrix A is
a number defined for each position (i, J ) in the matrix. If A is a
square matrix, the cofactor matrix of A is defined to be
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the matrix [¢;; (A)] whose (4, j)-entry s the (7, j )-cofactor of A

Definition 3.3 Adjugate of a Matrix

The adjugate of A, denoted adj(A), is the
transpose of this cofactor matrix; in symbols,

adj(A) = [ei;(A)]"

Example 3.2.6

1 3 =2
Compute the adjugate of A = 0 1 )
=7 = 7

and calculate A(adj A) and (adj A)A

Solution:
We first find the cofactor matrix.
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T 15| | 05 0 1]
-6 7 2 7 -2 —6
ci1(A) ca(4) ci3(4) 3 _9 1 -9 1 3
en(4) en(d) exn(d) | =] - ¢ 7‘ ‘72 7 —’ _9 76‘
c31(A) c32(A) c33(A)
3 -2 |1 -2 13
L1 5 5 01| |
[ 37 —10 2
=1 -9 3 0
17 -5 1

Then the adjugate of A is the transpose of this cofactor matrix.
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T

37 =10 2 37 =9 17
adjA=| -9 3 0 = -10 3 -5
17 -5 1 2 0 1

The computation of A(adj A) gives

31

Il
oo w
o wo
w o o

1
Il

1 3 -2 37 -9 17
AladjA)=| 0 1 5 || -10 3 -5
2 0 1

|

and the reader can verify that also (ade)A = 31. Hence,
analogy with the 2 X 2 case would indicate that det A = 3; this
is, in fact, the case.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-64

The relationship A(adjA) = (detA)I holds for any square
matrix A.
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Theorem 3.2.4 Adjugate formula

If A is any square matrix, then
A(adjA) = (detA)I = (adjA)A
In particular, if det A # 0, the inverse of A is given by

1
-1 _ .
~ detA e

It is important to note that this theorem is n.0tan efficient way to
find the inverse of the matrix A. For example, if A were 10 X 10
, the calculation of acj A would require computing 10 = 100
determinants of 9 X 9 matrices! On the other hand, the matrix
inversion algorithm would find A~ with about the same effort
as finding det A. Clearly, Theorem 3.2.4 is not a practicalresult:
its virtue is that it gives a formula for A~ that is useful for
theoreticalpurposes.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-65
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Example 3.2.7

A=|5 -7 1
3 0 -6

Solution:
First compute

2
detA=|5 -7 1|=|5 =7 11 :3‘
3

A 1 1 T
Since A~ = mad]/} = T30 [clJ(A)] 7
the (2,3)-entry of A7l is the (3,2)-entry of the matrix
ﬁcij (A); that is, it equals

shoenn(4) = gl (-

Example 3.2.8

If Ais™ X 1, n > 2, show that
det(adjA) = (detA)" L.
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Solution:

write d = det A; we must show that det(adjA) = dn—!
. We have A(ade) = dI by Theorem 3.2.4, so taking
determinants gives ddet(ade) = d". Hence we are done if
d # 0. Assume d = (); we must show that det(ade) =0
, that is, ade is not invertible. If A 75 0, this follows from
A(adjA) =dl =0; if A=0, it follows because then
adjA = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

AZ =10

is a system of 72 equations in 72 variables L1, L2, ..., Ly. Here
Ais the T X T coefficient matrix and ¥ and b are the columns
1 bl
X9 N b2
T = and b =
T bn,

of variables and constants, respectively. If detA 74 0, we left

multiply by A~ to obtain the solution Z = A~ 1b. When we use
the adjugate formula, this becomes
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oL agiag
: dera “44)
L,
011(14) C21 (A) s Cnl (A) bl
1 c12(A) ca2(A) -+ cna(A) by
~ detA : : : :
Cln(A) CQn(A) T Cnn(A) bn
Hence, the variables 1, L9, . . ., Ty, are given by
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1

xr1 = m [blcll(A) —+ bQCQl(A) 4+ -+ bpcna (A)]
1
_ A A) 44 byenn(A
T2 = [b1c12(A) 4 bacaa(A) + - - - + buena(A)]
1
Ty = Tt A [b1c10(A) + bacon(A) + -+ + bypcan(4)]
Now the quantity

b1011(A) + bocoy (A) + -+ bpcnt (A) occurring in the
formula for g looks like the cofactor expansion of the determinant
of a matrix. The cofactors involved are
611(A), 621(14), .o, Cnl (A), corresponding to the first
column of A. If Aj is obtained from A by replacing the first column
of A by b, then C;1 (Al) = Cj1 (A) for each 7 because column
1 is deleted when computing them. Hence, expanding det(Al) by
the first column gives
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detA; = bici1(Ar) + bacai (A1) + -+ - + bpeni(Ar)
= blcll(A) + szzl(A) + -+ bncnl(A)
= (detA)x;

Hence, 1 = djjﬁ and similar results hold for the other

variables.

Theorem 3.2.5 Cramer’s Rule

If A is an invertible 70 X 7 matrix, the solution to the

system
AZ =0
of T equations in the variables L1, L9, . . . , Ly, is given
by
detAq det Ao detA,
1 = =

] x e o« o x —_—
detA’ 2 detA’ P detA

where, for each k, A L is the matrix obtained from A by
replacing column & by b.
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Example 3.2.9

Find 11, given the following system of equations.
9r1+x2 — x3=4
91+ 29— 23=1
1 —T9+5xr3=2

Solution:

Compute the determinants of the coefficient matrix A and the
matrix A, obtained from it by replacing the first column by the
column of constants.

[ 5 1 —1]
detA = det | 9 1 -1 | =-16
1 -1 5 |
[ 4 1 —1]
detA; = det | 1 1 -1 =12
2 -1 5|
Hence, 1 = % = —%by Cramer’s rule.

Cramer’s rule is .0t an efficient way to solve linear systems or
invert matrices. True, it enabled us to calculate x| here without
computing o or I3. Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the
number of computations needed to find all the variables by the
gaussian algorithm is comparable to the number required to find
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one of the determinants involved in Cramer’s rule. Furthermore,
the algorithm works when the matrix of the system is not invertible
and even when the coefficient matrix is not square. Like the
adjugate formula, then, Cramer’s rule is 1.0t a practical numerical

technique; its virtue is theoretical.

@ Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-66

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=704#h5p-152

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-153
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3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the
weather in a region, the economy of a nation, the diversity of an
ecosystem, etc. Describing such systems is difficult in general and
various methods have been developed in special cases. In this
section we describe one such method, called diagonalization,
which is one of the most important techniques in linear algebra. A
very fertile example of this procedure is in modelling the growth
of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin
by setting up a simple model of a bird population in which we make
assumptions about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of
birds. Because the number of males and females are nearly
equal, we count only females. We assume that each female
remains a juvenile for one year and then becomes an adult,
and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1.  The number of juvenile females hatched in any year
is twice the number of adult females alive the year
before (we say the reproduction rateis 2).

2. Half of the adult females in any year survive to the

next year (the adult survival rateis %).
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3. One-quarter of the juvenile females in any year
survive into adulthood (the

juvenile survival rateis %).

If there were 100 adult females and 40 juvenile females
alive initially, compute the population of females & years
later.

Solution:

Let aj and Jk denote, respectively, the number of adult and
juvenile females after k years, so that the total female population is
the sum @y, + 7. Assumption 1 shows that Jp1 = 2ay, while
assumptions 2 and 3 show that @11 = %akj + %jk Hence the
numbers A, and J in successive years are related by the following

equations:
1 + 1.
a = —-a —
k+1 9 k 4]l-c
Jk+1 = 2ay,

Jk

L1
and A = 2 4
l 2 0
these equations take the matrix form
U1, = AUy, for each £ =0,1,2,...

= a
If we write v, = l k 1

Taking k = () gives /] = AT, then taking k = 1 gives
Uy = At = A0, and taking k=2 gives
273 = AUQ = A3170. Continuing in this way, we get

U, = Akwo, for each Kk =0,1,2,...
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Since Uy = @0 = 100
"7 o | | 40

is known, finding the population profile ¥, amounts to computing
AF for all k > (. We will complete this calculation in Example
3.3.12 after some new techniques have been developed.

Let A be a fixed 7 X T matrix. A sequence Vg, U1, U9, . . .
of column vectors in " is called a
linear dynamical system. Many models regard ¥; as
a continuous function of the time f, and replace our condition
between Ek +1 and AU}, with a differential relationship viewed as
functions of time if V) is known and the other ¥}, are determined
(as in Example 3.3.1) by the conditions

Ukt1 = AUy, for each £ =0,1,2,...

These conditions are called a matrix recurrence for the

vectors Uj. As in Example 3.3.1, they imply that

¥y, = A%y for all k >0
so finding the columns ¥}, amounts to calculating AF for k>0

Direct computation of the powers AF of 2 square matrix A can
be time-consuming, so we adopt an indirect method that is
commonly used. The idea is to first diagonalize the matrix A,
that is, to find an invertible matrix P such that

(3.8) P7YAP = D is a diagonal matrix

This works because the powers DF of the diagonal matrix [) are
easy to compute, and Equation (3.8) enables us to compute powers
Ak of the matrix A in terms of powers Dk of D. Indeed, we can
solve Equation (3.8) for A to get A = PDP -1 Squaring this
gives

A? = (PDP Y (PDP ') = PD*P!

Using this we can compute A3 as follows:

A% = AA? = (PDP Y (PD?*P~') = PD3P!

Continuing in this way we obtain Theorem 3.3.1 (even if [J is not
diagonal).
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Theorem 3.3.1

A= PDP then A* = PD*P~Ltoreach
k=1,2,...

Hence computing AF comes down to finding an invertible matrix
P as in equation Equation (3.8). To do this it is necessary to first
compute certain numbers (called eigenvalues) associated with the
matrix A.

Eigenvalue and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If Aisan T X T matrix, a number A is called an
eigenvalue of A if

AZ = \¥ for some column # # 0 in "

In this case, I is called an eigenvector of A
corresponding to the eigenvalue A, or a A-
eigenvectorfor short.
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Example 3.3.2

3 5 S |5
IfA_[1 _1]andx_l11then

AZ = 47 so A\ = 4 is an eigenvalue of A with
corresponding eigenvector 7,

The matrix A in Example 3.3.2 has another eigenvalue in addition
to A = 4. To find it, we develop a general procedure for any
1 X N matrix A.

By definition a number A is an eigenvalue of the 72 X 7 matrix
A if and only if AZ = AT for some column & # (. This is
equivalent to asking that the homogeneous system

(M —A)Z=0

of linear equations has a nontrivial solution ' 7% 6 By Theorem
2.4.5 this happens if and only if the matrix A — A s not invertible
and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

det(A — A) =0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If Aisan? X 1 matrix, the
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characteristic polynomial c4(x) of Ais
defined by
ca(x) =det(xl — A)

Note that C4 (:c) is indeed a polynomial in the variable &, and it
has degree 7 when A is an 70 X 7 matrix (this is illustrated in the
examples below). The above discussion shows that a number A is an
eigenvalue of A if and only if C 4 ()\) = 0, that is if and only if \ is
a root of the characteristic polynomial C A(sc) We record these
observations in

Theorem 3.3.2

Let A bean T X M matrix.

1. The eigenvalues A of A are the roots of the
characteristic polynomial CA () of A.

2. The \-eigenvectors T are the nonzero solutions to
the homogeneous system

(M —-A)Z=0

of linear equations with M — A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is
a routine application of gaussian elimination, but finding the
eigenvalues can be difficult, often requiring computers. For now, the
examples and exercises will be constructed so that the roots of the
characteristic polynomials are relatively easy to find
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(usually integers). However, the reader should not be misled by this
into thinking that eigenvalues are so easily obtained for the matrices
that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix

4=[i ]

discussed in Example 3.3.2, and then find all the eigenvalues
and their eigenvectors.

Solution:
Since

z 0 3 5 r—3 =5
“”I_A_{o x]_{l —11‘[ -1 x—i—l]

we get

ca(x) = det [ x_—13 x_—|—51 ] =22 -2 —-8=(z—4)(z+2)
Hence, the roots of CA(.I) are \{ = 4 and Ao = —2, so

these are the eigenvalues of A. Note that \{ = 4 was the
eigenvalue mentioned in Example 3.3.2, but we have found a new
one: \g = —2.

To find the eigenvectors corresponding to A9 = —2, observe
that in this case
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. [ x-3 -5 ] [-5 -5
(Aﬂ_A)x_l ~1 A2+1}_l—1 —11

so the general solution to ()\QI—A).f: 0 is

S -1
r=t
l 1
where ¢ is an arbitrary real number. Hence, the eigenvectors T

corresponding to Ao are f:tl _1 1 where t £ 0 is

arbitrary. Similarly, \; — 4 gives rise to the eigenvectors

5t

r=t , t 7 0 which includes the observation in Example

1
3.3.2.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-68

Note that a square matrix A has many eigenvectors associated
with any given eigenvalue A. In fact every nonzero solution T of
(/\I — A)f = 6 is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined
by the gaussian algorithm (see Theorem 1.3.2). Observe that any
nonzero multiple of an eigenvector is again an eigenvector, and such
multiples are often more convenient. Any set of nonzero multiples
of the basic solutions of ()\I - A)a‘:’ = 6 will be called a set of
basic eigenvectors corresponding to .
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GeoGebra Exercise: Eigenvalue and eigenvectors

https: //www.geogebra.org/m /DIXTtm2k
Please answer these questions after you open the webpage:

1. Set the matrix to be
1 0
M =
0 2
2. Drag the point % until you see the vector i and M
are on the same line. Record the value of A. How many
times do you see U and M1 lying on the same line when
1 travel through the whole circle? Why?
3. Based on your observation, what can we say about the
eigenvalue and eigenvector of /V/?
4. Set the matrix to be
M=|3 7
1 -1

and repeat what you did above.
5. Check your lecture notes about the eigenvalues and
eigenvectors of this matrix. Are the results consistent with
what you observe?

Example 3.3.4:
Find the characteristic polynomial, eigenvalues, and basic
eigenvectors for
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2 0 O
A=11 2 -1
1 3 -2

Solution:
Here the characteristic polynomial is given by

r—2 0 0

calx)=det | -1 xz-2 1 =(x—-2)(z—-1)(x+1)
-1 -3 z4+2
so the eigenvalues are \1 = 2, Ay =1, and A3 = —1. To

find all eigenvectors for A\{ = 2, compute

Al —2 0 0 0 00
Ml —A= -1 -2 1 =| -1 0 1
-1 -3 A +2 -1 -3 4

We want the (nonzero) solutions to ()\1[ - A)f = 0. The
augmented matrix becomes

0 0 0|0 1 0 =10
-1 0 1/0(—=101 —-1/0
-1 -3 4]0 0 0 O

using row operations. Hence, the general solution T to
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(All—A)fzﬁisf:t 1

1
1
where ¥ is arbitrary, so we can use T = 1
1

as the basic eigenvector corresponding to A1 = 2. As the reader
can verify, the gaussian algorithm gives basic eigenvectors

0
o= | 1
1
0
and 73 = %
1
corresponding to A9 = 1 and A3 = —1, respectively. Note that
0
to eliminate fractions, we could instead use 373 = 1
3

as the basic \3-eigenvector.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-155

Example 3.3.5
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If A is a square matrix, show that A and AT have the
same characteristic polynomial, and hence the same
eigenvalues.

Solution:
We use the fact that £ — AT = (x[ — A)T. Then

cyr(z) = det (zI — AT) = det [(xI — A)'] = det(xI — A) = ca(x)
by Theorem 3.2.3. Hence C T (37) and CAg ($) have the same
roots, and so AT and A have the same eigenvalues (by Theorem
3.3.2).
The eigenvalues of a matrix need not be distinct. For example, if
11
A=
0 1
the characteristic polynomial is (SC — 1)2 so the eigenvalue 1
occurs twice. Furthermore, eigenvalues are usually not computed

as the roots of the characteristic polynomial. There are iterative,
numerical methods that are much more efficient for large matrices.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-67
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-156

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=70#h5p-157
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4. Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We
view a point in 3-space as an arrow from the origin to that point.
Doing so provides a “picture” of the point that is truly worth a
thousand words.

Vectors in R

Introduce a coordinate system in 3-dimensional space in the usual
way. First, choose a point () called the 0rtgin, then choose three
mutually perpendicular lines through O, called the x, y, and
Zaxres, and establish a number scale on each axis with zero at the
origin. Given a point Pin 3-space we associate three numbers T,
1, and 2 with P , as described in Figure 4.1.1.
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®P(x. y. z)
X
\_...- VY = ‘\'
o) __| 2
~~o >\i }‘
Po(x, v, 0)

Figure 4.1.1

These numbers are called the coordinates of P , and we
denote the point as (:13, Y, Z), or P(m, Y, Z) to emphasize the
label P. The result is called a cartesian coordinate system for
3-space, and the resulting description of 3-space is called
cartesian geometry.

As in the plane, we introduce vectors by identifying each point
P(x, Y, Z) with the vector

x .
v= |y | in ]Rd, represented by the arrowfrom the origin
z
to PP as in Figure 4.1.1. Informally, we say that the point I’ has
vector ¥/, and that vector ¥ has point P. 1n this way 3-space is
identified with R3, and this identification will be made throughout
this chapter, often without comment. In particular, the terms
“vector” and “point” are interchangeable. The resulting description
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of 3-space is called vector geometry. Note that the origin
0

is 6 = O
0

Length and direction

We are going to discuss two fundamental geometric properties of
vectors in R>; length and direction. First, if ¥/ is a vector with point
P the length of vector ¥ is defined to be the distance from the
origin to P, that is the length of the arrow representing U. The
following properties of length will be used frequently.

Theorem 4.1.1

Let ¢ = y | beavector.

LIl = Vo7 P+

2 17=0ifandonlyif||17||=0

3. ||a17|| = |a|||17|| for all scalars @.
Proof:

Vector Geometry | 183



2

® P

Figure 4.1.2

Let U have point P(x, Y, Z)

OQ P, and so ||U| |2 h? + 22 by Pythagoras’ theorem.
But h is the hypotenuse of the right triangle ()RQ, SO

h? = z? + yz. Now (1) follows by eliminating h? and taking
positive square roots.

. 1f||7]| = 0, then 22 4 % + 22 = 0 by (1). Because squares
of real numbers are nonnegative, it follows that
rT=Yy=2z= (0, and hence that U= 6 The converse is
because ||6|| =0

= T
. Wehave qv = [ ar ay az } so (1) gives

lad]|* = (az)* + (ay)* + (az)* = a?||7]|*

Hence ||cw|| =Vva 2||17|| and we are done because

a? = |a| for any real number a.
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Example 4.1.1

2
Fif— | —3
3
then ||U]| = V4 + 9+ 9 = /22. Similarly if
)

U=

-3
in 2-space then ||U]| = v4 + 9 = v/13.

When we view two nonzero vectors as arrows emanating from the
origin, it is clear geometrically what we mean by saying that they
have the same or opposite direction. This leads to a
fundamental new description of vectors.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-161

H An interactive H5P element has been excluded from this
om
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EN  version of the text. You can view it online here:
https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=73#h5p-164

Theorem 4.1.2

Let 7 # 0 and W # O be vectors in R, Then 7 = 1
as matrices if and only if ¥/ and W have the same direction
and the same length.

Proof:

If U= 0, they clearly have the same direction and length.
Conversely, let ¥/ and W be vectors with points P (33 Y, Z) and
Q (1‘1, Y1, 21) respectively. If ¥/ and 0 have the same length and
direction then, geometrically, P and Q must be the same point.
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Hence x = x1, Y = Y1,
and z = zy, that is

&~

Figure 4.1.3

i I
z Z1

Note that a vector’s length and direction do 10t depend on the
choice of coordinate system in R3. such descriptions are important
in applications because physical laws are often stated in terms of
vectors, and these laws cannot depend on the particular coordinate
system used to describe the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to /3 has
length and direction.
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Figure 4.1.4

Hence,

Definition 4.1 Geometric vectors

Suppose that A and B are any two points in R3.n

Figure 4.1.4 the line segment from A to B is denoted A B
and is called the geometric vector from A to B.
Point A is called the tail of AB, B is called the tip

and the lengthis denoted | |A_B| |

Note that if ¥/ is any vector in R3 with point PP then v =0Pis

itself a geometric vector where (J is the origin. Referring to AB as
a “vector” seems justified by Theorem 4.1.2 because it has a direction
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(from A to B) and a length ||A_B| | However there appears to be
a problem because two geometric vectors can have the same length
and direction even if the tips and tails are different.

For example A_B and P_Q
in Figure 4.1.5 have the same
length \/5 and the same
direction (1 unit left and 2 units
up) so, by Theorem 4.1.2, they
+0(0,2) are the same vector! The best

way to understand this
1 0 A(3, 1) 7

P(1,0)
0O & t

apparent paradox is to see A B

v and P(Q) as different
representations of the
same underlying vector

[ _; ] Once it is clarified,

Figure 4.1.5

this phenomenon is a great benefit because, thanks to Theorem
4.1.2, it means that the same geometric vector can be positioned
anywhere in space; what is important is the length and direction,
not the location of the tip and tail. This ability to move geometric
vectors about is very useful.

The Parallelogram Law

We now give an intrinsic
description of the sum of two
vectors U and W in ]RS, that is
a description that depends only
on the lengths and directions of

¥ and 1 and not on the choice

Figure 4.1.6 of coordinate system. Using
Theorem 4.1.2 we can think of

these vectors as having a common tail A. If their tips are P and Q
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respectively, then they both lie in a plane 7P containing A, P,
and ()), as shown in Figure 4.1.6. The vectors ¥/ and W create a
parallelogram in P, shaded in Figure 4.1.6, called the parallelogram
determined by ¥/ and 0.

If we now choose a coordinate system in the plane PP with A as
origin, then the parallelogram law in the plane shows that their sum
U -+ 10 is the diagonal of the parallelogram they determine with
tail A. This is an intrinsic description of the sum U’ + 0 because it
makes no reference to coordinates. This discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors ¥/ and W
, the vector v -+ 0 is the diagonal with the same tail as U
and 0.

190 | Vector Geometry



Y )
V+w
P /
(a) w w
Y
V+w

(c)

w

Figure 4.1.7

Because a vector can be positioned with
its tail at any point, the parallelogram law
leads to another way to view vector
addition. In Figure 4.17 (a) the sum U + W
of two vectors ¥/ and 1 is shown as given
by the parallelogram law. If W is moved so
its tail coincides with the tip of ¥ (shown in
(b)) then the sum U + 0 is seen as “first U
and then 0. Similarly, moving the tail of U
to the tip of 1 shows in (c) that ¥ -+ 0 is
“first 1 and then U This will be referred
to as the tip-to-tail rule, and it
gives a graphic illustration of why
T+ 0=+ 7.

Since AB denotes the vector from a
point A to a point B, the tip-to-tail rule
takes the easily remembered form

AB + BC = AC
for any points A, B, and C.

w

u*

u+v-+w

Figure 4.1.8

One reason for the importance of the
tip-to-tail rule is that it means two or more
vectors can be added by placing them tip-
to-tail in sequence. This gives a useful
“picture” of the sum of several vectors, and
is illustrated for three vectors in Figure
4.1.8 where U + U -+ 10 is viewed as first
?7, then ?7, then 0.
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B
v i i C f;’
A
w C

Figure 4.1.9

Figure 4.1.9.

Theorem 4.1.3

There is a simple geometrical way to
visualize the (matrix) difference? — W
of two vectors. If ¥ and 10 are positioned so
that they have a common tail A | and if B
and (' are their respective tips, then the tip-
to-tail rule gixes w + C_B = 7. Hence

U — W = C B is the vector from the tip of
W to the tip of ¥/. Thus both U — W and
U+ W
parallelogram determined by ¥/ and w (see

appear as diagonals in the

If 7 and 10 have a common tail, then U —w is the
vector from the tip of 2 to the tip of .

One of the most useful applications of vector subtraction is that it

gives a simple formula for the vector from one point to another, and

for the distance between the points.

Theorem 4.1.4
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Let P1 (;Ul, Y1, 21) and Pz(xg, Y2, Zz) be two
points. Then:

Tr9 — I
L PPy=| y2—m
22— 2

2. The distance between P; and P is
V(w2 —21)2 + (y2 — y1)2 + (22 — 21)2.

Can you prove these results?

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-162

Example 4.1.3

The distance between P| (2, -1, 3) and Pz(l, 1, 4)
is \/(—1)2 + (2)2 + (1)2 = \/6, and the vector
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from P to P s
-1
PiPy=| 2
1

The next theorem tells us what happens to the length and direction
of a scalar multiple of a given vector.

Scalar Multiple Law

If a is a real number and U 7 () is a vector then:

*  Thelength of AU is ||a17’|| = |a|||17||
« Ifav # 0, the direction of QU is the same as U if
a > 0; opposite to ¥/ ifa < 0.

Proof:

The first statement is true due to Theorem 4.1.1.

To prove the second statement, let () denote the origin in R3.
Let ¥ have point P, and choose any plane containing () and P.f
we set up a coordinate system in this plane with () as origin, then

17 = P so the result follows from the scalar multiple law in the
plane.
Avector 1 is called a unit vector if ||u|| = 1. Then
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1 0 0
i=|0l]. j=1|1]adk=|0

0 0 1
are unit vectors, called the coordinate vectors.

Example 4.14

If ¥ # 0 show that ﬁ U is the unique unit vector in

the same direction as ¥.

Solution:

The vectors in the same direction as ¥/ are the scalar multiples ai
where @ > 0. But ||a17|| = |CL|||17|| = a||17|| when @ > 0, so
av is a unit vector if and onlyif @ = EIE

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-158
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Definition 4.2 Parallel vectors in

Two nonzero vectors are called parallel if they have
the same or opposite direction.

Theorem 4.1.5

Two nonzero vectors ¥/ and 0 are parallel if and only if
one is a scalar multiple of the other.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-160

Example 4.1.5
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Given points P(2, -1, 4), Q(3, -1, 3), A(O, 2, 1)
,and B (1, 3, 0), determine if P() and AB are parallel.

Solution:

By Theorem 413, P_Q = (1, 0, —1) and
AB = (1,1,-1).1 PQ = tAB
then (1,0, —1) = (t,t,—t), so 1 =t and 0 = £, which is
impossible. Hence P_Q is not a scalar multiple of A_B, so these
vectors are not parallel by Theorem 4.1.5.

Lines in Space

These vector techniques can be used to give a very simple way of
describing straight lines in space. In order to do this, we first need
a way to

specify the orientation of such a line.

Definition 4.3 Direction Vector of a Line

- e
We call a nonzero vector d 7 () a direction vector for
—

the line if it is parallel to A B for some pair of distinct
points A and B on the line.
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o
Note that any nonzero scalar multiple of d would also serve as a
direction vector of the line.

We use the fact that there is exactly one line that passes through
a particular point PO (:E(), Yo, Zo) and has a given direction vector

a
Cf = b |. We want to describe this line by giving a condition
C
on &I, , and 2 that the point P(:E, Y, Z) lies on this line. Let
Zo
Po=| Y%
<0

x
Y
z

and ﬁ = denote the vectors of P and P, respectively.

Then
p=po+ PP

Hence P lies on the line if

P i
and only if )P is parallel to

d —that is, if and only if
PyP = td for some scalar t

by Theorem 4.1.5. Thus ﬁ is the
vector of a point on the line if

Po

Origin

Figure 4.110 and only if p = Py + td for
some scalar .

Vector Equation of a line
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The line parallel to d 75 0 through the point with vector

—

Po is given by
P =po+td tany scalar

In other words, the point P with vector ﬁ is on this line
if and only if a real number t exists such that

p=po+id.

In component form the vector equation becomes

T o a
y|l=1w | +t]| b
z 20 c

Equating components gives a different description of the line.

Parametric Equations of a line

The line through Po (SU(), Yo, Z()) with direction vector
a

Ci) = b 75 6 is given by
Cc
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T = x0 + ta
y =1yo+tb tany scalar
z =z +tc

In other words, the point P (CIZ, Y,z ) is on this line if
and only if a real number ¢ exists such that * = X + ta,
Yy = Yo + th,and 2 = 2o + tc.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-163

Example 4.1.6

Find the equations of the line through the points

P()(Q, 0, 1) and P| (4, —1, 1).

Solution:
Let
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denote the vector from P to Py. Then d is parallel to the line (

Py and Pj are on the line), so d serves as a direction vector for
the line. Using /) as the point on the line leads to the parametric

equations
r=24+2
y=—t t a parameter
z=1

Note that if P is used (rather than F), the equations are
r=4+12s

y=—1—s s a parameter
z=1

These are different from the preceding equations, but this is
merely the result of a change of parameter. In fact, s = ¢ — 1.

Example 4.1.7

Determine whether the following lines intersect and, if
so, find the point of intersection.

x=1-—3t r=—1+4+s
y=2+5t y=3—14s
z=1+1 z=1—s
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Solution:
Suppose P (CE, Y,z ) with vector ]7 lies on both lines. Then

1-3t x —1+s
245t | =y | =] 3—4s | for some t and s,
1+1¢ z 1-s

where the first (second) equation is because P lies on the first
(second) line. Hence the lines intersect if and only if the three

equations
1-3t=—-1+s
245t =3—4s
1+t=1-s
have a solution. In this case,f = 1 and § = —1 satisfy all three
equations, so the lines do intersect and the point of intersection is
1-3¢ —2
p=1|2+5 | =| 7
1+1¢ 2

using t = 1. Of course, this point can also be found from

—1+s
p= 3 —4s | usings = —1.
1—s

An interactive H5P element has been excluded from this
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N\ yersion of the text. You can view it online here:
https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=73#h5p-32

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-159

4.2 Projections and Planes

Suppose a point Panda plane are given and it is desired to find the
point Q that lies in the plane and is closest to P, as shown in Figure
4.2.1.
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P Clearly, what is required is to
find the line through P that is
perpendicular to the plane and
then to obtain () as the point of
intersection of this line with the
plane. Finding  the line
perpendicular to the plane
requires a way to determine
when  two  vectors  are

Figure 4.2.1 perpendicular. This can be done
using the idea of the dot product
of two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in

Given vectors

<y
I
<
=
oo
=)
(=}

, their dot product ¥ - 0 is a number

I
<
™

defined
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= =T

VW = T122 + Y1y2 + 2122 =V W

v d - . . . .
Because U - W is a number, it is sometimes called the scalar

product of ¥ and 0.

Example 4.2.1

and qj = 4 |,then
L _1 -
14+(=1)-4+3-(=1) = —5.

Y
g
I
2o

Theorem 4.2.1

Let U, ¥, and W denote vectors in R3 (or R2).

¥ - 0 is a real number.
VW =1w-7.
— —
3. Uv-0=0=0-7.

Vector Geometry | 205



. T-v=|7>
5.  (kV)-w = k(W - ¥) =0+ (k) foral

The readers are invited to prove these properties using the
definition of dot products.

Example 4.2.2

Verify that || — 34||? = 1 when ||7]| = 2,
||W]| = 1,and U - W = 2.

Solution:
We apply Theorem 4.2.1 several times:
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|7 — 3W||* = (¥ — 30) - (¥ — 3)
W) — 30 - (T — 310)
=07 —3(¥- %) — 3(0 - T) + (0 - &)

1> = 6(7 - @) + 9] ||
1

Il
ey
Yy
<y

I
W

= [lv

There is an intrinsic description of the dot product of two

nonzero vectors in . To understand it we require the following

result from trigonometry.

Laws of Cosine

If a triangle has sides a, b, and C, and if 6 is the interior
angle opposite C then

& =a’+b* — 2abcos b
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Proof:

We prove it when is 6 acute,
that is 0<60< %; the
obtuse case is similar. In Figure
422 we have p = asin6
and ¢ = a cos 6.

Hence Pythagoras’ theorem

6 9

gives
Figure 4.2.2

A =p*+(b—q)? =a*sin?0 + (b — acosh)?
= a*(sin? § + cos? ) + b* — 2abcos b

The law of cosines follows because sin2 0 + COS2 0 =1 for
any angle 0.

Note that the law of cosines reduces to Pythagoras’ theorem if #
is a right angle (because COS % = 0).

Now let ¥ and 1 be nonzero vectors positioned with a common
tail. Then they determine a unique angle 6 in the range

0<o<nm

This angle 6 will be called the angle between U' and w. Clearly v
and W are parallel if 0 is either () or 7. Note that we do not define
the angle between ¥ and 10 if one of these vectors is 6

The next result gives an easy way to compute the angle between
two nonzero vectors using the dot product.

Theorem 4.2.2
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Let ¥ and W be nonzero vectors. If @ is the angle
between ¥ and W , then

v - W = ||7|||||| cos O

Proof:

We calculate ||17— u_f||2 in
two ways. First apply the law of

\ cosines to the triangle in Figure
4 6 4.2.4 to obtain:
W
Figure 4.2.4
15— l|* = [|5]]* + [J]|* — 2] 3]][]5]| cos

On the other hand, we use Theorem 4.2.1:
18— dl]|* = (7 — &) - (T — )

=0 U—0-w—W-U+wW- W

= [10]]* = 2(¢ - @) + ||

Comparing these we see

—2||17||||1If|| cosf = —2(17- ZU), and the result follows.

that

If 7 and 0 are nonzero vectors, Theorem 4.2.2 gives an intrinsic
description of 7/ - 1} because ||7]|, ||7]|, and the angle € between
¥ and W do not depend on the choice of coordinate system.

Moreover, since ||7]| and ||| are nonzero (¥ and W0 are nonzero

vectors), it gives a formula for the cosine of the angle 0
U-w

cosf = I T T———
1911
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Since ) < @ < 71, this can be used to find 6.

Example 4.2.3

Compute the angle between

-1

U= 1 and
)
2
U= 1

L _1 -
Solution:
. vw . —2+41-2 _ 1
Compute CcOS 6 = el — Veve 2 Now recall

that cOs 6 and Sin 0 are defined so that (cos f, sin 9) is the
point on the unit circle determined by the angle 0 (drawn
counterclockwise, starting from the positive X axis). In the present
case, we know that COS 6 = —% and that 0 < @ < 7. Because
COS % = %, it follows that @ = %r

If ¥ and W0 are nonzero, the previous example shows that COS 0
has the same sign as U - W, so
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- >0 if and only if 6 is acute (0 <
- <0 if and only if 6 is obtuse (5
- =0 ifand onlyif 6=7

S Sy

In this last case, the (nonzero) vectors are perpendicular. The

following terminology is used in linear algebra:

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=73#h5p-70

Definition 4.5 Orthogonal Vectors in

Two vectors U and W are said to be

\textbf{orthogonal}\index{orthogonal
vectorsh\index{vectors!orthogonal vectors} if v = () or

w = () or the angle between them is %

Vector Geometry | 211



— —

Since U - W = 0 if either U = 0 or W = 0, we have the
following theorem:

Theorem 4.2.3

Two vectors ¥/ and W are orthogonal if and only if
v - w = 0.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-72

Example 4.2.4

Show that the points P (3, —1,1),Q(4, 1, 4), and
R(G, 0, 4) are the vertices of a right triangle.

Solution:
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The vectors along the sides of the triangle are

1 3 2
PQ=|2|,PR=|1],andQR=| -1
3 3 0

Evidently PQ) - QR =2 —240 =0, so PQ and QR
are orthogonal vectors. This means sides P Q and QR are
perpendicular—that is, the angle at Q is a right angle.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-34

Proj ections

In applications of vectors, it is frequently useful to write a vector as
the sum of two orthogonal vectors.
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If a nonzero vector d is
specified, the key idea is to be
able to write an arbitrary vector
1 as a sum of two vectors,

U = U + U

where ¢ is parallel to d and
ﬁ_’? = U — U is orthogonal to
d . Suppose that 1 and Ci 75 6
emanate from a common tail ()
(see Figure 4.2.5). Let P be the
tip of 1, and let P denote the
foot of the perpendicular from
P to the line through () parallel

tod .
(b) Then 7 = QP has the
required properties:

Figure 4.2.5 N
1. 17 is parallel to d .

— 147 is orthogonal to d.

gi
I
£

Definition 4.6 Projection in

The vector 1] = QP 1 in Figure 4.2.6 is called the

projection of i ond .
It is denoted
Uy = proj i
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In Figure 4.2.5 (a) the vector u1 = pro _] Cz‘u has the same direction
as d however, Ul and d have opposne directions if the angle
between 1 and d is greater than & 5 (see Figure 4.2.5 (b)). Note that
the projection U] = proj J‘Ij is zero if and only if % and j are
orthogonal.

Calculating the projection of i ond 75 0 is remarkably easy.

Theorem 4.2.4

Let U and d 2 () be vectors.

1.  The projection of U ond is given by
projail = ad.
2. The vector Ul — Proj J‘l_i is orthogonal to d .

Proof:

—

The vector ﬁl = pro j d_ﬁ is parallel to d and so has the form
] = td for some scalar t. The requirement that 4/ — 7{; and

d are orthogonal determines ¢. In fact, it means that

(l_[ — ﬁl) - d = 0 by Theorem 4.2.3. If U1 = td is substituted
here, the condition is

O=(@—td)-d=u-d—t(d-d)=a-d—t||d]]?

It follows that t = ﬁ, where the assumption that d 75 0

guarantees that ||d| |2 # 0.
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Example 4.2.5

Find the projection of

2
u=| —3
1
1
ond=| —1
3

—

and express 1 = ] + Uy where {7 is parallel to d and
U is orthogonal to d.

Solution:

-
The projection 471 of % on d is

) _ddg 24343 .
=proji = ——d = =—| -
Uy = proj; H ||2 12+( 1)2_|_32 11 5
14
Hence Uy = U — U] = % —25 |, and this s
—13

—

orthogonal to d by Theorem 4.2.4 (alternatively, observe that
d - g = 0).Since 1 = w7 + 1o, e are done.
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Note that the idea of projections can be used to find the shortest

3 ~
distance from a point to a straight line in R which is | |u1 | |, the
length of the vector that’s orthogonal to the direction vector of the
line.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-36

Planes

Definition 4.7 Normal vector in a plane

A nonzero vector 71 is called a normal for a plane if it is
orthogonal to every vector in the plane.

For example, the unit vector k= (O, 0, 1) is a normal vector for
X — Y plane.
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Figure 4.2.6
T — X
.Because Py P = Y — Yo
Z — 20

Scalar equation of a plane

Given a point
Py = Po(:l?(), %), Z()) and a
nonzero vector 7, there is a
unique plane through £y with
normal 77, shaded in Figure
4.2.6. A point
P = P(m, Y, Z) lies on this
plane if and only if the vector
P(;’P is orthogonal to 71 —that

is, if and only if 77 - FPoP =0

this gives the following result:

The plane through Py (:Eo, Yo, Zo) with normal

a
n=1|2>b

C

#0

as a normal vector is given by

a(r — xo) + b(y —yo) +c(z —20) =0

In other words, a point P (ZC, Y,z ) is on this plane if
and only if &, ¢, and 2 satisfy this equation.
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Example 4.2.8

Find an equation of the plane through Py(1, —1, 3)

3
2
as normal.
Solution:

Here the general scalar equation becomes
3x—1)—(y+1)+2(z—3)=0
This simplifies to 3x — y + 2z = 10.
If we write d = axg + byg + €z, the scalar equation shows
a
that every plane with normal 17 = b

C

has a linear equation of the form

42 ar +by+cz=d

for some constant d. Conversely, the graph of this equation is a

a

plane with 77 = b | as a normal vector (assuming that a, b,
C
).

and C are not all zero

Example 4.2.9

Vector Geometry | 219



Find an equation of the plane through Py(3, —1, 2)
that is parallel to the plane with equation 2 — 3y = 6.

Solution:
The plane with equation 22 — 3y = 6 has normal
2
n= —3 | . Because the two planes are parallel, 71 serves as a
0

normal for the plane we seek, so the equation is 2 — 3y = d for
some d according to (4.2). Insisting that Py (3, -1, 2) lies on the
plane determines d; that is, d=2-3— 3(—1) = 9. Hence,
the equation is 22 — 3y = 9.

Consider points F (.CL‘o, Yo, Zo) and P (:C, Y,z ) with vectors

Zo
po= | Yo
<0
and
i
P= |y
z
Given a nonzero vector 77, the scalar equation of the plane through
a
Py (:130, Yo, Zo) with normal 17 — b | takes the vector form:
C

Vector Equation of a Plane
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The plane with normal 77 75 {0 through the point with
vector ﬁo is given by

- (P —po) =0
In other words, the point with vector ﬁ is on the plane if
and only if P satisfies this condition.

Moreover, Equation (4.2) translates as follows:
Every plane with normal 77 has vector equation - ﬁ = d for

some number .

Example 4.2.10

Find the shortest distance from the point (2, 1, —3)
to the plane with equation 3x — 9 + 4z = 1. Also find
the point Q on this plane closest to P.

Solution:
The plane in question has
3
normal n = —1
4

Choose any point ) on the
plane—say Py (O, — 1, O)
—and let Q(.T, Y, Z) be the
point on the plane closest to P

(see the diagram). The vector
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2

from P to Pis g = 2 | . Now erect 77 with its tail at P
-3
Then () P = 7 and 7] is the projection of i on 7i:
. n-u_ —8 —4 1
U = n—=—/| — —
2
n 26 13
Inl] ) )
Hence the distance is ||QP|| = ||ﬁl || =4 13 6. To calculate
x
the point (), let =1y
z
and
0
po=| —1
0

be the vectors of () and F. Then

0 2 4 3 3
’ -3 4 —23
13
This gives the coordinates of Q( 3 193 ’ —1?))3 )
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-71

The Cross Product

if P, (), and R are three distinct points in Rd that are not all
on some line, it is clear geometrically that there is a unique plane
containing all three. The vectors P() and PR both lie in this
plane, so finding a normal amounts to finding a nonzero vector
orthogonal to both PP Q and PR. The cross product provides a
systematic way to do this.

Definition 4.8 Cross Product

X1 Z2
Given vectors /] = Y1 and 7y = Yo |
21 %)

define the cross product U] X Uy by
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Y122 — Z1Y2
V1 X Vg = —(a:lzg — leg)

T1Y2 — Y122

Because it is a vector, U] X Us is often called the vector product.
There is an easy way to remember this definition using the
coordinate vectors:

1 0 0
1= 0],5=11|,andk=| 0
0 0 1

They are vectors of length 1 pointing along the positive I, 9, and
Z axes. The reason for the name is that any vector can be written as
€T

Y :x;+y5+zg
z

With this, the cross product can be described as follows:

Determinant form of the cross product
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Example 4.2.11
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i 21
2 o S = -1 = 2 1 |- 2 1 |-
UlXUg:det[] -1 3‘|:‘ 431_‘47]4“_13]6
k47

=197 — 105 + 7k

¥

Observe that U X W is orthogonal to both ¥/ and W in Example
4.2.11. This holds in general as can be verified directly by computing
v - (17 X ’LU) and W - (17 X IU), and is recorded as the first part
of the following theorem. It will follow from a more general result
which, together with the second part, will be proved later on.

Theorem 4.2.5
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e Ed . 3
Let ¥ and W be vectors in R :

1. U X W is a vector orthogonal to both ¥/ and .

2. If ¥/ and 10 are nonzero, then UvXxw=0 if and
only if ¥/ and 0 are parallel.

Recall that

v-w =0 if and only if ¥ and @ are orthogonal.

Example 4.2.12

Find the equation of the plane through P (1, 3, —2),
Q(l, 1, 5), and R(2, -2, 3).

Solution:
The vectors
0
P_Q = | —2 | and
7
"1
PR=| —5
)

lie in the plane, so
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i 0 1 25
PQxPR=det| j -2 -5 | =2514+7j+2k=| 7
kK 7 5 2

is a normal for the plane (being orthogonal to both ° Q and PR
). Hence the plane has equation

25 + Ty + 2z =d for some number d.

Since P(l, 3, —2) lies in the plane we have
25-14+7-3+2(—2)=d. Hence d=42 and the
equation is 25x + Ty + 2z = 42. Can you verify that he same
equation can be obtained if Q_P and Q_R, or R_P and R_Q, are

used as the vectors in the plane?

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-35

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-69
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: /ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-33

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-73

4.3 More on the Cross Product

. x1
The cross product U X W of two Rd -vectors §j = Y1
<1
Z2
and qj = Yo
<2

was defined in Section 4.2 where we observed that it can be best
remembered using a determinant:
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Z xr1 X9
- = Y1 Y2 |z Ty T2 |z 1 T2 |7
U X W = det = i k
l% Zl Zz 21 22 21 22 J Y Y2
1 2
1
Here j — | 0 |, ] = 1 |.and
0 |0
1
k=10 are the coordinate vectors, and the determinant is
0

expanded along the first column. We observed (but did not prove)
in Theorem 4.2.5 that U X W is orthogonal to both ¥ and 0. This
follows easily from the next result.

Theorem 4.3.1

X0 T T2
If of = Y0 U= Y1 yand 1 = Y2 |
20 21 22
o T1 X2 1
then ¢ - (U X W) =det | yo v1 Yo
20 21 22 |

Proof:
Recall that U - (17 X ”LU) is computed by multiplying
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corresponding components of U@ and U X W and then adding.
Using equation (4.3), the result is:

Yr Y2
Z1 22

T T2
z1 z2

T T2
Y1 Y2

e

)

Zop X1 X2
)Zdet Yo Y1 Y2

20 21 %2

where the last determinant is expanded along column 1.
The result in Theorem 4.3.1 can be succinctly stated as follows: If

?7, ¥, and 1) are three vectors in RB, then
i-(Txw)=det| @ T @]
where [ 4 v w } denotes the matrix with 0, ¥/, and 0 as
its columns. Now it is clear that U X W is orthogonal to both 7/ and
W because the determinant of a matrix is zero if two columns are
identical.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-81

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=73#h5p-75

Because of (4.3) and Theorem 4.3.1, several of the following

properties of the cross product follow from
properties of determinants (they can also be verified directly).

Theorem 4.3.2

o 3
Let U , U, and W denote arbitrary vectors in R .

U X V is a vector.

1

2 U X Tis orthogonal to both % and U,

5. 4x0=0=0x4.

s Axa=0

5. X T =—(Ux ).

6. (ki) x U= k(d x ¥) =14 x (k) for any

scalar k

7. UX (U+ W) = (4 x V) + (4 x o).

(0+ W) x 4 = (0 x @) + (& X 4)

We have seen some of these results in the past; can you prove 6,7,

and 8?
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-82

We now come to a fundamental relationship between the dot and
cross products.

Theorem 4.3.3 Lagrange Identity

If U and U are any two vectors in R3 , then

1@ > 9| = [|@*||7]]* - (@ - 9)*

Proof:
Given 1/ and ¥, introduce a coordinate system and write
S
y1 | and

g
I

<1

Z2
Y2 in component form. Then all the terms in the

<y
I

<2
identity can be computed in terms of the components.

An expression for the magnitude of the vector U X U can be
easily obtained from the Lagrange identity. If 0 is the angle between
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U and U, substituting u-v= ||17:||||17||C080 into the
Lagrange identity gives

[l x 9| = [[al 101" — ||a][*|]|* cos” 6 = ||]|*||7]|* sin” 0
using the fact that 1 — cos? 0 = sin? 6. But sinf is
nonnegative on the range ) < € < 7, so taking the positive
square root of both sides gives
[l < o] = ||a]|||o]| sin 6.

This expression for
||l_[ X U || makes no reference
to a coordinate system and,
moreover, it has a nice
geometrical interpretation. The

parallelogram determined by
Figure 4.3.1 the vectors 7 and ¥ has base
length |[|U]| and altitude
| |ﬁ | | sin 6 . Hence the area of the parallelogram formed by % and
U is
([l sin 0)]|v]| = [|a x ]|

Theorem 4.3.4

If 1 and ¥ are two nonzero vectors and f is the angle
between 11 and 77 , then:

il, ||ﬁ><?7|| = ||ﬁ||||17||sin9Ztheareaofthe
parallelogram determined by U and .

2. U and U are parallel if and only if Uxv=0.
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Proof of 2:

By (1), U X U =0 ifand only if the area of the parallelogram is
zero. The area vanishes if and only if U and U have the same or
opposite direction—that is, if and only if they are parallel.

@ Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-80

Example 4.3.1

Find the area of the triangle with vertices P (2, 1, 0),
Q(3, —1, 1), and R(l, 0, 1).

Solution:
We have
1 2
R_P = 1 and R_Q = —1 |. The area of the
-1 0

triangle is half the area of the parallelogram formed by these
vectors, and so equals % | |RP X RQ| | We have
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i 12 ~1
RPxRQ=det| j 1 —-1|=| -2

so the area of the triangle is

S|RP x RQ|| = 3v1+4+9=1V14.
If three vectors 7_1:, ¥, and w
are given, they determine a

uxv “squashed” rectangular solid

w/ T~ :'_'\\ called a parallelepiped (Figure

/’\) """ ~-----% 432) and it is often useful to

u ,,” v (\\ ’,” be able to find the volume of
TTEmEmEEEEEEEs i such a solid. The base of the

Figure 4.3.2 solid is the parallelogram

determined by i and U, so it
has area A = | |u X ’U| | The height of the solid is the length A of
the projection of 1 on U X U. Hence

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-77
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Thus the volume of the parallelepiped is h A = |7If . (ﬁ X 17) |
This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three
vectors W, 1L, and U is given by |U_f : (ﬁ X 17) |

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-76

Example 4.3.2

Find the volume of the parallelepiped determined by the
vectors
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d=| 2|, @a=|1],9= 0
—1 0 1
Solution:
By Theorem 431,
11 -2
G- (Ex¥)=det| 2 1 0]|=-3
-1 0 1
Hence the volume is |IU (’J X ’17)| = | - 3| = 3 by Theorem
4.3.5.

We can now give an intrinsic description of the cross product
— —
U X,

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-78

Right-hand Rule
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If the vector U X ¥ is grasped in the right hand and the
fingers curl around from U to through the angle 0, the
thumb points in the direction for U X V.

To indicate why this is true, introduce coordinates in R?) as
follows: Let 1/ and ¥ have a common tail (), choose the origin at
O, choose the T axis so that u points in the positive XX direction,
and then choose the Y axis so that 7 is in the -1 plane and the
positive 4/ axis is on the same side of the T axis as /. Then, in this
system, 1 and ¥ have component form

a b
’[I: 0 andﬁ: C
0 0

where @ > 0 and ¢ > 0. Can you draw a graph based on the
description here?
The right-hand rule asserts that U X U should point in the

positive Z direction. But our definition of uUxv gives
i a b 0
uxv=det| j 0 c|=1] 0| =(ac)k
E 0 0 ac

and (CLC)]{ has the positive 2 direction because aC > 0.

a An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=73#h5p-79

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=73#h5p-74
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5. Vector Space [latex size

="40"[\machbb{R}"n[/latex]

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set IR'" of all N -tuples (called
\textit{vectors}), and began our investigation of the matrix
transformations IR _, R™ given by matrix multiplication by an
™M X T matrix. Particular attention was paid to the euclidean plane

RQ where certain simple geometric transformations were seen to
be matrix transformations.

In this chapter we investigate R™ in full generality, and
introduce some of the most important concepts and methods in
linear algebra. The 7-tuples in IR™ will continue to be denoted & ,
g , and so on, and will be written as rows or columns depending on
the context.

n
Subspaces of R

Definition 5.1 Subspaces of
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Aset U of vectors in IR™" is called a subspace of R™itit
satisfies the following properties:

S1. The zero vector 0 € U.

S2.IfF € Uandyje U,thenf—{—ng U.
$3.1fZ € U, thenaX € U for every real number a.

We say that the subset U is closed under addition if S2 holds, and
that [/ is closed under scalar multiplication if S3 holds.

Clearly R™isa subspace of itself, and this chapter is about these
subspaces and their properties. The set [/ = {6}, consisting of
only the zero vector, is also a subspace because 6 + 6 = 6 and
0,6 = 6 for each @ in R ; it is called the zero subspace. Any
subspace of R™ other than {6} or R" is called a proper
subspace.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-85
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We saw in Section 4.2 that

z every plane M through the
n origin in Rd has equation
ax + by + cz = 0 where
’ a, b, and C are not all zero.
5 y a
Here 73 — b is a normal
X M c

for the plane and

M={7inR®|7i -7=0}
where
T
U= Y and 77 - U denotes the dot product introduced in
z
Section 2.2 (see the diagram). Then M is a subspace of 3 Indeed we
show that M satisfies S1, S2, and S3 as follows:
S1. 0 € M because 77 - 0 = ;

S2. If veM and U1 € M, then
ﬁ-(17+171)=ﬁ17+ﬁ-171:0+0=0, SO
v+ v € M,

S3.1f 0 € M, then 71 - (a¥) = a(7i - ¥) = a(0) =0, so
av € M.

Example 5.1.1

Planes and lines through the origin in R3 are all

subspaces of R?’.
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Solution:

We proved the statement for planes above. If L is a line through
the origin with direction vector d , then [, = {tcf | t € R}.Can
you verify that L satisfies S1, S2, and S3?

Example 5.1.1 shows that lines through the origin in R? are
subspaces; in fact, they are the only proper subspaces of RQ.
Indeed, we will prove that lines and planes through the origin in R3
are the only proper subspaces of R3. Thus the geometry of lines
and planes through the origin is captured by the subspace concept.
(Note that every line or plane is just a translation of one of these.)

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-86

Subspaces can also be used to describe important features of an
M X N matrix A. The null space of A, denoted null A, and the
image space of A, denoted imA, are defined by

nullA={Z € R"| AZ=0} and imA={AZ|ZcR"}

In the language of Chapter 2, null A consists of all solutions T
in R" of the homogeneous system AT = 6, and 7M A is the set
of all vectors 17 in R™ such that AZ = ¥/ has a solution X . Note
that  is in null A if it satisfies the condition AT = 6, while
im A consists of vectors of the form A for some T in R™. These
two ways to describe subsets occur frequently.
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Example 5.1.2

If Aisan ™ X N matrix, then:

1. nullAisa subspace of R".
2. ©mA isasubspace of R".

Solution:

1. The zero vector 0 € R"™ lies in null A because AQ) = 0. 1f
T and Zp areinnull A, then ¥ 4 F; and aT areinnull A
because they satisfy the required condition:

AZ+i) =AZ+ A%, =0+0=0 and A(af)=a(AZ) =a0=0
Hence null A satisfies S1, S2, and S3, and so is a subspace of
R’I’L
2. The zero vector 0 € R™ lies in 21 A because () = AQ.
Suppose that 17 and 7/ are in ¥M A, say f = AZ and
1 = AT where T and 7 are in R"™. Then

J+uy1 = AT+ AT = A(Z+71) and ay = a(AZ) = A(aZ)
show that ¢/ + /1 and @/ are both in 2112 A (they have the
required form). Hence 21 A is a subspace of R™.

There are other important subspaces associated with a matrix A
that clarify basic properties of A.If A is an 70 X 7 matrix and \ is
any number, let

E\(A) = {T € R" | AT = \7)
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A vector I is in E)\(A) if and only if ()\I - A)f =0, so
Example 5.1.2 gives:

Example 5.1.3

E)\(A) = null()\I — A) is a subspace of R" for
each 0 X M matrix A and number .

By (A) is called the eigenspace of A corresponding to A. The
reason for the name is that, in the terminology of Section 3.3, Ais
an eigenvalue of A if F)y (A) 75 {6} In this case the nonzero
vectors in [/ (A) are called the eigenvectors of A corresponding
to .

The reader should not get the impression that every subset of R"
is a subspace. For example:

T > 0} satisfies S1 and S2, but not S3;

z? = y2} satisfies S1 and S3, but not S2;

Hence neither {J; nor Us is a subspace of 2
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-83

Spanning sets

Let ¥ and W be two nonzero, nonparallel vectors in R3 with their
tails at the origin. The plane M through the origin containing these
vectors is described in Section 4.2 by saying that n=7XW is
a normal for M, and that M consists of all vectors ﬁ such that
i =0.

While this is a very useful way to look at planes, there is another
approach that is at least as useful in R3 and, more importantly,
works for all subspaces of R" for any . > 1.

The idea is as follows:
Observe that, by the diagram, a
vector ﬁ is in M if and only if
it has the form

7= ai + bii

for certain real numbers @

5
and b (we say that P is alinear
combination of ¥ and 7).
Hence we can describe M as

M ={aZ+ b | a,b € R}

and we say that {17 , W } is a spanning set for M . It is this notion
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of a spanning set that provides a way to describe all subspaces of
R’n

As in Section 1.3, given vectors I, T3, . . . , T in R, a vector
of the form

1121 + toZo + - - - + tpZr  where the ¢; are scalars
is called a linear combination of the fi, and t; is called the
coefficient of '; in the linear combination.

Definition 5.2 Linear Combinations and Span in

The set of all such linear combinations is called the span
of the fi and is denoted

span{Zy, o, ..., T} = {121 + toZo + - - - + tx Ty | t; in R}

itV = span{Zy, To, ..., Tk}, wesaythat V is
spanned by the vectors X1, T9, . . . , Tk, and that the
vectors fl, 52, 30600 fk span the space V.

Here are two examples:
span{®} = {tZ | t € R}
which we write as span{f } = RZ for simplicity.
spand{Z,y} ={rz + sy | r,s € R}
In particular, the above discussion shows that, if 7 and 10 are two

nonzero, nonparallel vectors in R5, then

M = span{v,w}

is the plane in R3 containing ¥ and . Moreover, if d is any

nonzero vector in R3 (or RQ), then
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L = span{t} = {td |t e R} =Rd

=
is the line with direction vector d . Hence lines and planes can
both be described in terms of spanning sets.

Example 5.14

teeZ = (2,-1,2,1)and 7= (3,4, ~1,1)n
R* Determine whether P = ( 0,—-11,8, 1) or
7d=1(2,3,1,2)areinU = span{x, y}

Solution:
The vector P is in U if and only if P = SZ + t¥/ for scalars s
and ¢. Equating components gives equations

2s+3t=0, —s+4t=-11, 2s—t=8, and s+t=1

This linear system has solution S = 3 and T = —2, so ﬁ is
in UU. On the other hand, asking that ¢ = S + ¢/ leads to
equations

2s4+3t=2, —s+4t=3, 2s—t=1, and s+t=2

and this system has no solution. So ¢ does not lie in /.

@ Aninteractive H5P element has been excluded from this
version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-87
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Theorem 5.1.1

LetU = span{a‘c’l, X, .. ,:Z"k} in R™. Then:

1. U isasubspace of R™ containing each ;.
2. 1f W is a subspace of R™ and each fi € W, then
UCw.

Proof:

1. The zero vector 0 is in I because
6 =07 +07 +---+ Ofk is a linear combination of
the ;. If & = 121 + tody + - + 1.2y, and
Y = S1@1 + Sy + - -+ + SpLparein U, then T + 7
and Q¥ are in U because

Z4+y = (t1+s1)%1 + (ta + s2)T2+ - + (tg + Sk)Tk, and
ar = (atl)a_ﬁ + (atg)fg + -+ (atk)fk

Finally —each @; is in U  (for  example,
To =071 +1%9 +---+ Ofk) so S1, S2, and S3 are
satisfied for U, proving (1).

2. LetZ = t121 + toXa + - - - + t, T}, where the t; are
scalars and each ’; € W . Then each t;Z; € W because
W satisfies S3. But then & € W because W satisfies S2
(verify). This proves (2).
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Condition (2) in Theorem 5.1.1 can be expressed by saying that
span{fl, Toy ..., fk} is the smallest subspace of R™ that
contains each fi. This is useful for showing that two subspaces
U and W are equal, since this amounts to showing that both
U C Wand W C U. Here is an example of how it is used.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https:/ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-88

Example 5.1.5

If € and :lj are in R", show that
span{Z,y} = span{Z + ¢, — g}.

Solution:
Since both & + ¢/ and & — ¥/ are in span{f, g}, Theorem
5.1.1 gives

But f:%(f—k@’ +%f—:¢7) and
j = %(f+ g) - %(f - ?j) are both in
Span{:f+ Y, T — Y}, s0

span{Z, i} C span{Z + i, T — J}
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again by Theorem 5.1.1. Thus
spani{Z, ¥} = span{Z + §, ¥ — y}, as desired.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-91

It turns out that many important subspaces are best described
by giving a spanning set. Here are three examples, beginning with
an important spanning set for IR" itself. Column 7 of the? X M
identity matrix [, is denoted é'] and called the jth coordinate

vector in R", and the set {51 L €9,y E}L} is called the standard
basis of R". If
z1
Z2
T = ) is any vector in R"™ then
Tn

T = T1€1 + x2€9 + - -+ + X, €y, as the reader can verify.
This proves:

Example 5.1.6

R"™ = span{eél, €, . . ., €y} where
51, 52, ceey €y, are the columns of 1,,.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-84

If Aisan 7 X 7 matrix A, the next two examples show that it
is a routine matter to find spanning sets for null A and im A.

Example 5.1.7

Given an 70 X T matrix A, let 1, ¥, . . . , T} denote

the basic solutions to the system AZ = () given by the
gaussian algorithm. Then

null A = span{Zy, T2, ..., T}

Solution:

If ¥ e nullA, then AT¥ = 6 so Theorem 1.3.2 shows that
T is a linear combination of the basic solutions; that is,
null A C span{¥i, T, .. a:k} On the other hand, if T
is in span{xl, o, .. xk} then
T = 11T + toly + -+ - + tp @}, for scalars t;, so

AT = 1 ATy + Lo ATy + -+t ATy, = .04+ t20 + - + £,0 = 0
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This shows that & € nullA, and hence that
span{Zi, T2, ..., Tk} C null A. Thus we have equality.

Example 5.1.8

Let C1, Ca, . . . , Cp, denote the columns of the 112 X 1
matrix A. Then

imA = span{cy, ca,...,Cn}

Solution:
If {51, €2y vy gn} is the standard basis of IR™*, observe that
[ A8 A& - A&, |=Al&a & - & |=AL,=A=[& & ---&].

Hence ¢; = Aé; is in 4mA for each 1, so
span{ci, G, ...,Cn} CimA.

Conversely, let g be in ¥M A, say if = AT for some T in R".
If

T
T2
T = , then Definition 2.5 gives
Ln
J= AT = 2161 + x2C2 + - -+ + 1,y s in span{ci, Ca, ..., Cn}

This shows that imA C span{¢ci, Ca,...,Cn}, and the
result follows.
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GeoGebra Exercise: Linear Combination of vectors

https: //www.geogebra.org/m/Q4hT3V5N
Please answer these questions after you open the webpage:

1. Set OA = (1,0)and OB = (0, 1). Set
P=(4,5).
2. Click “start animation” to see which linear combination of
O_A and O_B will produce the vector O_P.
3. Change O_A = (—1, 2) and O_B = (2, 1).
Randomly choose a point P.
4. Click “start animation” to see which linear combination of

O_;‘l and (fB will produce the vector O_P. Write it down.
5. What if we set O—A = (—1 2) and O—B = (2 —1)
? Can you explain what’s happening now? Would d you still be
able to find a linear combination of OA and OB to
produce a vector OP ?

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-89
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-90

5.2 Independence and Dimension

Some  spanning sets are better than others. If
U= span{a_:’l, :I?g, . ,:I_fk} is a subspace of R", then every
vector in [/ can be written as a linear combination of the fi in
at least one way. Our interest here is in spanning sets where each
vector in U has exactly one representation as a linear combination
of these vectors.

Linear Independence
Given fl, 372, ey :fk in R", suppose that two linear
combinations are equal:

T1T1 + ToT2 + -+ TETE = S171 + S2T2 + - + SETk

We are looking for a condition on the set {fl, To,..., T k} of
vectors that guarantees that this representation is unique; that is,
r; = §; for each 7. Taking all terms to the left side gives

(7”1 — 31)3_5"1 + (7”2 — SQ)fQ + -+ (Tk; — Sk)fk = 6
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so the required condition is that this equation forces all the
coefficients 77; — S; to be zero.

Definition 5.3 Linear Independence in

We call a set {:73'1, Loy nny fk} of vectors linearly
independent if it satisfies the following condition:

If )71 +toZa+ - +txfy =0thent; =tg=--- =t =0

Theorem 5.2.1

If {fl, To,. .., fk} is an independent set of vectors
in R™, then every vector in Span{fl, Lo, ..., fk} has
a unique representation as a linear combination of the ;.

It is useful to state the definition of independence in different
language. Let us say that a linear combination vanishes if it equals
the zero vector, and
call a linear combination trivial if every coefficient is zero. Then the
definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear
combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is
independent:
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Independence Test

To verify that a set {fl, To, ..., :i"k} of vectors in R"
is independent, proceed as follows:

1. Set a linear combination equal to zero:
0171 + toZs + -+ - + tp@y = 0.

2. Show thatt; = () for each 7 (that is, the linear
combination is trivial).

Of course, if some nontrivial linear combination vanishes,
the vectors are not independent.

Example 5.2.1

Determine whether
{(1, 0, —2, 5), (2, 1,0, —1), (1, 1,2, 1)} is

independent in R

Solution:

Suppose a linear combination vanishes:

r(1,0,—2,5) + s(2,1,0,—1) + £(1,1,2,1) = (0,0,0,0)

Equating corresponding entries gives a system of four equations:
r+2s+t=0,s+t=0,—2r+2t=0, and 5r —s+t =0
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The only solution is the trivial one 7 = 8 =t = () (please
verify), so these vectors are independent by the independence test.

Example 5.2.2

Show that the standard basis {€7, €a, . . . , €, } of R"
is independent.

Solution:
The components of 1€ + o€y + -+ + t,€, are
t1,t2,...,tn. So the linear combination vanishes if and only if

each t; = (). Hence the independence test applies.

Example 5.2.3

If {&, i/} is independent, show that
{25 + 35, T — 5g} is also independent.

Solution:

if $(27 + 3y) + t(Z — 5y) = 0, collect terms to get
(2s + )X+ (3s — bt)y = 0. Since {&, i} is independent
this combination must be trivial; that is, 28 +¢t = 0 and
35 — 0t = 0. These equations have only the trivial solution
§ =t = (), as required.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-93

Example 5.2.4

Show that the zero vector in IR™ does not belong to any
independent set.

Solution:

No set {O, X1, T2, .., :fk} of vectors is independent because
we have a vanishing, nontrivial linear combination

1-0+4 0%, +0Zy+ -+ + 07 = 0.

Example 5.2.5

Given & in R™, show that {f} is independent if and
only if Z # 0.
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Solution:
A vanishing linear combination from {3_:' } takes the form £ = ()
,tin R. This implies that # = () because & # 0.

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix /3,
are independent.

Solution:
We illustrate the case with 3 leading 1s; the general case is
analogous. Suppose R has the form

0 1 *x * *
0 0 0 1 % =%
R_OOO()l*

000 0O0O

where * indicates a nonspecified number. Let Ry, Ro, and R3

denote the nonzero rows of I, If t1R1 +toRo +t3R3 =0
we show that ¢1 = (), then t9 = (), and finally {3 = 0. The

condition t1 Ry + t9 Ry + t3R3 = (0 becomes

(0,t1, *,%,%,%) 4+ (0,0,0,t2, *,%) + (0,0,0,0,t3,%) = (0,0,0,0,0,0)

Equating second entries show that £; = (), so the condition
becomes to Ro 4 t3R3 = 0. Now the same argument shows
that £o = (). Finally, this gives £33 = (0 and we obtain t3 = 0

A set of vectors in R™ is called linearly dependent (or simply
dependent) if it is not linearly independent, equivalently if some
nontrivial linear combination vanishes.
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Example 5.2.7

If ¥ and W are nonzero vectors in R3, show that
{?7 , W } is dependent if and only if ¥/ and W are parallel.

Solution:

If U and W are parallel, then one is a scalar multiple of the
other, say i = aaw for some scalar @. Then the nontrivial linear
combination ¥ — @ = 0 vanishes, so {’L_f , W } is dependent.

Conversely, if {U,w} is dependent, let sU + tw = 0 be
nontrivial, say S 7 (. Then U= —%w so ¥ and W are parallel.
A similar argument works if £ £ (.

With this we can give a geometric description of what it means
for a set {ﬁ, 17, 117} in R3 to be independent. Note that this
requirement means that {17, IE} is also independent (
av + b = 6 means that QU + av + bw = 6), o)
M = span{z?, 117} is the plane containing U, W, and 0 (see the
discussion preceding Example 5.1.4). So we assume that {17 , w } is
independent in the following example.

Examples 5.2.8
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M
{u, v, w} independent

M
{u, v, w} not independent

Solution:

If {’L_[, ’17, u_f} is independent, suppose U is in the plane
M = span{¥, '}, say U = av’ 4+ bf, where @ and b are in
R. Then 14 — a?¥ — bwf = 6 , contradicting the independence
of {17, ¥, 0}

On the other hand, suppose that 1 is not in M ; we must show
that {ﬂ, U, u_f} is independent. If 71 + U + tW = 6 where
r, S, and t are in R, then 7 = () since otherwise
i =—20+ =L is in M. But then 7+ tuf = 0, so
s =1 = () by our assumption. This shows that {’1_1:, U, ’u_f} is
independent, as required.
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By Theorem 2.4.5, the following conditions are equivalent for an
1 X 1 matrix A:

1. A is invertible.
2. 1f AZ = () where Z is in Rn, then & = ().

3. AZ = b has a solution T for every vector b in R™,

While condition 1 makes no sense if A is not square, conditions
2 and 3 are meaningful for any matrix A and, in fact, are related
to independence and spanning. Indeed, if 51, 52, cey Cp, are the
columns of A, and if we write

x1

)
, then

8y
I

Tn
AZ = x1C1 + x2Ca2 + - - - + TGy,
by Definition 2.5. Hence the definitions of independence and
spanning show, respectively, that condition 2 is equivalent to the
independence of {51, 52, cey 571} and condition 3 is equivalent
to the requirement that span{é'l, Cay ... ,5n} = R™. This
discussion is summarized in the following theorem:

Theorem 5.2.2

If Aisan 7 X 1 matrix, let {1, Ca, . . . , €y, } denote
the columns of A.

1. {51, Coy.e, En} is independent in R"" if and

—

only if AT = 0,7 inR", implies Z=0.
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2. R™= spcm{cl, COIPE En} if and only if
AT = b has a solution I for every vector b in R™

For a square matrix A, Theorem 5.2.2 characterizes the invertibility
of A in terms of the spanning and independence of its columns
(see the discussion preceding Theorem 5.2.2). It is important to
be able to discuss these notions for rows. If 1, Ta, . . ., T} are
1 X n rows, we define span{¥i, ¥a,..., T} to be the set
of all linear combinations of the Z; (as matrices), and we say that
{fl, fg, ceey fk} is linearly independent if the only vanishing
linear Combination is the trivial one (that is, if
{.’El ,$2 g ,f{} is independent in IR", as the reader can
verify).

Theorem 5.2.3

The following are equivalent for an 72 X 7 matrix A:

1. Aisinvertible.

2. The columns of A are linearly independent.

3. The columns of A span R".

4. The rows of A are linearly independent.

5. The rows of A span the set of all 1 X 72 rows.
Proof:
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Let 1, Ca, . . . , Cy, denote the columns of A.

() < (2). By Theorem 24.5, A is invertible if and only if
Ar = 6 implies T = 6; this holds if and only if
{51, Coyen En} is independent by Theorem 5.2.2.

(1) — (3). Again by Theorem 2.4.5, A is invertible if and only if
AT = g has a solution for every column B in R"; this holds if
and only if span{El, 52, ceey En} = R"™ by Theorem 5.2.2.

(1) = (4). The matrix A is invertible if and only if AT is invertible
(by Corollary 2.4.1 to Theorem 2.2.4); this in turn holds if and only
it AT has independent columns (by (1) — (2)); finally, this last
statement holds if and only if A has independent rows (because the
rows of A are the transposes of the columns of AT).

(1) < (5). The proof is similar to (1) — (4).

Example 5.2.9

Show that
S = {(27 _2a 5)7 (_37 17 1)) (27 77 _4)} is
independent in R?’.

Solution:
2 =2 5)
Consider the matrix A = -3 1 1 with the
2 7T -4
vectors in S as its rows. A routine computation shows that
detA = —117 # 0,so A isinvertible. Hence .S is independent
by Theorem 5.2.3. Note that Theorem 5.2.3 also shows that
R3 = spansS.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-92

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-100

Dimension

It is common geometrical language to say that R3 is 3-dimensional,
that planes are 2-dimensional and that lines are 1-dimensional. The
next theorem is a basic tool for clarifying this idea of “dimension”

Theorem 5.2.4 Fundamental Theorem
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Let U be a subspace of IR™. If U is spanned by 71
vectors, and if U contains k linearly independent vectors,
thenk < m

Definition 5.4 Basis of

If [/ is a subspace of R", a set {1, To, ..., T, } of
vectors in U is called a basis of U/ if it satisfies the
following two conditions:

1. {fl, 53’2, 500y fm} is linearly independent.
2. U =span{Z1,To,...,Tm}

Theorem 5.2.5 Invariance Theorem

If{fl,:fz, 300 ,a_fm}and {gl,gg, ce e gjk} are
bases of a subspace UJ of R"”, thenm = k.

Proof:
We have k£ < m by the fundamental theorem because
{Z1,@o,...,Zm} spans U, and {41,%2,..., Yk} is
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independent. Similarly, by interchanging Z's and ?7 ‘s we get
m < k.Hencem = k.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-98

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-99

Definition 5.5 Dimension of a Subspace of

if U is a subspace of R™ and {Z1, To, . .. , Ty } is
any basis
of U, the number, ™, of vectors in the basis is called the
dimension of [/, denoted

dimU =m
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The importance of the invariance theorem is that the dimension of
U can be determined by counting the number of vectors in any
basis.

Let {51, €2yt gn} denote the standard basis of R", that
is the set of columns of the identity matrix. Then
R" = SpCLTL{éi, €2y ..., gn} by Example 516, and
{51, 52, cey én} is independent by Example 5.2.2. Hence it is
indeed a basis of R" in the present terminology, and we have

Example 5.2.10

dim(R™) = nand {€}, &, ..., &, } isabasis.

This agrees with our geometric sense that IR? is two-dimensional
and R is three-dimensional. It also says that R! = R is one-
dimensional, and {1} is a basis. Returning to subspaces of Rn, we
define

dim{0} =0
This amounts to saying iO} has a basis containing no vectors.

This makes sense because () cannot belong to any independent set.

Example 5.2.11
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Let U = S r,s in R ».Show that U isa

r
subspace of Rg, find a basis, and calculate dimU.

Solution:
Clearly,
]
s | = ru + sv where
r
17 0
U= 0 and U= 1 . It follows that
[ 1] 0
U = span{i, U}, and hence that [J is a subspace of RS,
Moreover, if 71 + SU = 6, then
r| [0
s | = | 0 |sor =s=(.Hence {u, ¢} is independent,
r 0

and so a basis of [ This means dimU = 2.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-97
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While we have found bases in many subspaces of R™ we have not
yet shown that every subspace has a basis.

Theorem 5.2.6

Let U # {6} be a subspace of IR". Then:

1. U hasabasis and dimU < n.

2. Anyindependent set in U can be enlarged (by
adding vectors from the standard basis) to a basis of
U.

3. Any spanning set for U can be cut down (by
deleting vectors) to a basis of /.

Example 5.2.3

Find a basis of R* containing S = {ﬂ:, ’l_f} where
U= (0, 1,2, 3) and U = (2, —1,0, 1).

Solution:

By Theorem 5.2.6 we can find such a basis by adding vectors from
the standard basis of R* to S. If we try = (1, 0,0, 0), we
find easily that {51 U, U } is independent. Now add another vector
from the standard basis, say €9.

Again we find that B = {51, 52, ’LT, 17} is independent. Since
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B has 4 = dimR* vectors, then 53 must span R4 by Theorem
5.2.7 below (or simply verify it directly). Hence I3 is a basis of R*

Theorem 5.2.7

Let {J be a subspace of R™ where dim{J = m, and let
B = {¥1,¥s,..., T} beasetof m vectorsin U.
Then B is independent if and only if B spans /.

Proof:

Suppose B is independent. If B does not span U then, by
Theorem 5.2.6, B can be enlarged to a basis of [/ containing more
than 71 vectors. This contradicts the invariance theorem because
dimU = m, so B spans U. Conversely, if B spans U but is not
independent, then 3 can be cut down to a basis of [/ containing
fewer than 771 vectors, again a contradiction. So Bis independent,
as required.

Theorem 5.2.8

Let U C W be subspaces of IR". Then:

. dimU < dimW.
2. IfdimU = dimW thenU = W.

Proof:
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write dimW = k, and let B be a basis of U.

1. 11dimU > k, then B is an independent set in W
containing more than k vectors, contradicting the
fundamental theorem. So dimU < k = dimW.

2. tdimU = k, then B is an independent set in W
containing k = dim W vectors, so B spans W by
Theorem~??. Hence IV = spcmB = U, proving (2).

It follows from Theorem 5.2.8 that if [/ is a subspace of R, then
dimU is one of the integers 0, 1, 2, . . ., m, and that:

dimU =0 if and only if U = {0},

dimU =n if and only if U =R"

The other subspaces of IR™ are called proper. The following
example uses Theorem 5.2.8 to show that the proper subspaces of
R? are the lines through the origin, while the proper subspaces of
R3 are the lines and planes through the origin.

Example 5.2.14

1. If U is a subspace of R2or R3, thendimU = 1
if and only if U/ is a line through the origin.

2. 1f U is a subspace of R?’, then dimU = 2 ifand
only if [/ is a plane through the origin.

Solution:

1. Since dimU = 1, let {1_[} be a basis of UU. Then
U = span{i} = {ti | t in R}, soU is the line
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through the origin with direction vector . Conversely each
line L with direction vector d—) 75 6 has the form

L= {tcfl t in R}. Hence {J} is a basis of U, so U has
dimension 1.

2. 1fU C R?has dimension 2, let {#, 1} be a basis of U.
Then ¥ and W are not parallel (by Example 5.2.7) so
A=0xwW#0.LetP={ZnR? |7 -&=0}
denote the plane through the origin with normal 71. Then P is
a subspace of R3 (Example 5.1.1) and both ¥ and 0 lie in P
(they are orthogonal to 77), so U = span{¥, W} C P by
Theorem 5.1.1. Hence

UCPCR’

Since dimU = 2 and dim(R3) = 3, it follows from
Theorem 5.2.8 that dim P = 2 or 3, whence P=Uor Rj But
P 75 R3 (for example, 71 is not in P) and so U = P is a plane
through the origin.

Conversely, if [/ is a plane through the origin, then dim{ = ()
, 1, 2, or 3 by Theorem 5.2.8. But dimU # 0 or 3 because
U+#{0} and U#R? and dimU #1 by (1). So
dimU = 2.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-94
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-95

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-96

5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in
R? and R3, they both can be defined using the dot product. In
this section we extend the dot product to vectors in R”, and so
endow R™ with euclidean geometry. We then introduce the idea
of an orthogonal basis—one of the most useful concepts in linear
algebra, and begin exploring some of its applications.

276 | Vector Space [latex size ="40"]\mathbb{R}"n[ /latex]



Dot Product, Length, and Distance

IfT = (ml,SL‘Q, Ce ,xn) andg: (yl, Y2, ... ,yn) are two
n-tuples in R" recall that their dot product was defined in Section
2.2 as follows:

T-y=a1y1 +T2y2 + -+ TnlYn

Observe that if T and 77 are written as columns then
T - 77 = ijlj is a matrix product (and f’lj = xij‘r if they are
written as rows). Here Z + ¢/ isa 1 X 1 matrix, which we take to be
a number.

Definition Length in

As in R?’, the length of the vector is defined by

I8l = VE-Z = /o + 2} +- - +2)

Where 4/ ( ) indicates the positive square root.

A vector T of length 1 is called a unit vector. If &' = 0, then
||Z]| # 0 and it follows easily that

Wf is a unit vector (see Theorem 5.3.6 below), a fact that we shall

use later.

Example 5.3.1

Vector Space [latex size ="40"]\mathbb{R}"~n[/latex] | 277



T = (1,—1,—3,1) andgz (2,1,1,0) inR4,
thenZ -y=2—1—3+0= —2and
|Z]] = VI + 1+ 9+ 1 = /12 = 2v/3. Hence

— . .. 1 -. .
—— is a unit vector; similarly —=1/ is a unit vector.
23 y/6Y

Theorem 5.3.1

(G+2)=F-J+7- %
(a:ﬁ’) Y = a(a’c’ o 37) =T- (aﬁ) for all scalars
a.
i |EPR=z 7
5. ||f|| Zo,andHafH:Oifandonlyiffzo.
6. ||a:E|| = |a|||f|| for all scalars @.
Proof:

(1), (2, and (3) follow from matrix arithmetic because
T - 77 = fT_?j ; (4) is clear from the definition; and (6) is a routine
verification since |a| = \/ﬁ If & = (Z‘l, x2,... ,xn), then
|Z|| = \/:C% —f—x% + - —I—ZL’% so ||Z]| = 0 if and only if
x% + :13% R J}?L = (). Since each ; is a real number this
happens if and only if £; = O for each %; that is, if and only if
T = 6 This proves (5).
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Because of Theorem 5.3.1, computations with dot products in R"™
are similar to those in Rg. In particular, the dot product
(T1+ T2+ +Tm) - (G + T2+ + k)
equals the sum of Mk terms, Z; - ?jjv one for each choice of %

and . For example:

) —28(5 - 7) — 8(§ - )
— 8|71

<y

(3% — 49) - (77 + 27) = 21(Z - &) + 6(Z -
= 21)7|? — 22(& -

<y

holds for all vectors & and ?7 .

An interactive H5P element has been excluded from this

@ version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=76#h5p-103

Example 5.3.2

show that || + 7|2 = ||Z]|? + 2(Z - &) + ||7]]?

for any I and 77 in R™.

Solution:
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Using Theorem 5.3.1 several times:

IZ+9PP=EF+9) @+9) =3 F+F - §+7 - F+7-7
= |2 +2(Z - §) + ||7]]?

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https:/ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-108

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-109

Example 5.3.3

Suppose that R"™ = span{fl, fz, oo ,fT];} for
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oo d = e &
some vectors f;. If T - f; = (O for each 7 where  is in
R™, show that r=0.

Solution:

We show & = 0 by showing that ||f|| = 0 and using (5) of
Theorem 531  Since the ﬁ span  R"™  write
T = tlfl + t2f2 + -+ tkf_'];wherethetiarein]R.Then

|Z]P =7 =7 (tfi +tafo+ + tifi)

= t1(Z f1) + (T fo) + -+ (T f1)
t

We saw in Section 4.2 that if 7 and ¥ are nonzero vectors in
RB, then m = c0s 0 where 8 is the angle between 0 and

¥. Since |COS (9| <1 for any angle 6, this shows that
|ﬁ 17| < ||1_[||||77|| In this form the result holds in R™.

Theorem 5.3.2 Cauchy Inequality

If £ and 1/ are vectors in R", then
|- g1 < {|Z][]|4]]
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Moreover |f 37| = ||f||||37|| if and only if one of &
and 1/ is a multiple of the other.

Proof:

—

The inequality holds if =00 = 0 (in fact it is equality).
Otherwise, write ||Z|| =a > 0 and ||g]|=b6>0 for
convenience. A computation like that preceding Example 5.3.2 gives

1)
b7 — agl|2 = 2ab(ab— @ - ) and ||b7 + agl[2 = 2ab(ab+ 7 - §)

It follows that ab — & - ¢/ > 0 and ab + ¥ - 17 > 0, and
hence that —ab <z -y< ab Hence

If equahty holds, then |$ y| =ab, so ¥- y = ab or
x- g — —ab. Hence Equation (5.1) shows that bx — azj = Qor
bZ + ay = 0, so one of X and 77 is a multiple of the other (even
ifa =0o0rb= 0).

There is an important consequence of the Cauchy inequality.
leen T and Y in R™, use Example 5.3.2 and the fact that

y< |Iw||||y||tocompute

IZ + 411 = [12]1* +2(2 - 7) + [111* < [1Z11* + 201217 +11711* = (ll= + »l))

Taking positive square roots gives:

Corollary 5.3.1 Triangle Inequality

If  and :lj are vectors in Rn, then
12+ 91 < [lz]| + |14l
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The reason for the name comes from the observation that in R>
the inequality asserts that the sum of the lengths of two sides of a
triangle is not less than the length of the third side.

Definition 5.7 Distance in

If T and 1/ are two vectors in R, we define the
distance d (f ; :lj) between T and 37 by

d(Z, §) = ||z =yl

Theorem 5.3.3

It , :Ij , and Z are three vectors in IR"™ we have:

1 d(f, gj’) > Oforallfandg.

2. d(f, Zj) = Oifandonlyiff = gj’

3. d(:f, ’37) d(y, ) for all  and 1/

4. d(Z,2) < d(Z,y) + d(y, 2)forall Z, ¥, and

Z. \quad Triangle inequality.

Proof:
() and (2) restate part (5) of Theorem 5.3.1 because
d(a:, y) || (3) follows because ||ﬁ|| = || - UH
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for every vector i in R™. To prove (4) use the Corollary to Theorem
5.3.2:

<@ =PI+ 17— 2| = d(@, §) + d(¥, 7)

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors & and 37 in R" are orthogonal
if I - gj = (), extending the terminology in R3 (See
Theorem 4.2.3). More generally, a set {fl, fg, ce ey fk}
of vectors in /2" is called an orthogonal set if

Z;-Zj=0foralli#;j and x;#0 forall:

Note that {.’Z"} is an orthogonal set if T' 6 Aset
{fl, Loy onny fk} of vectors in R™ is called
orthonormal if it is orthogonal and, in addition, each fz isa
unit vector:

||%;|| = 1 for each i.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-102

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-107

Example 5.3.4

The standard basis {51, €y vy €n} is an
orthonormal set in R".

Example 5.3.5
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If {fl, Lo, ... ,fk} is orthogonal, so also is
{alfl, asTa, ..., akfk} for any nonzero scalars @;.

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=76#h5p-106

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-105

If ¥ ;ﬁ 6 , it follows from item (6) of Theorem 5.3.1 that

unit vector, that is it has length 1.

Definition 5.9 Normalizing an Orthogonal Set

If {fl, Ta, ... ,fk} is an orthogonal set, then
{ ~ _’1, L f27 Tty L .fk} is an orthonormal
[l [ [l=2]| [EA
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set, and we say that it is the result of normalizing the
orthogonal set {fl, Lo, -+ ,fk}.

Example 5.3.6

1 1 —1
, 1. |o] = 0
Iff) = 1 o = ) ' fs = 1|
= 7 0
—1
andﬁ;: ?
1

— — - T
then { f1, f2, f3, f4} is an orthogonal set in R* asis
easily verified. After normalizing, the corresponding

orthonormal set is {%fl, %‘f% %fg, 2L\/§f4}

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-101
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The most important result about orthogonallty is Pythagoras’
theorem. Given orthogonal vectors ¥/ and W in R3 , it asserts that
2 _ 2 2
v+ wl[* = |[2]|" 4 [|]]

. In this form the result holds for any orthogonal set in [R".

Theorem 5.3.4 Pythagoras’ Theorem

If {:)_fl, To, ..., .’J_fk} is an orthogonal set in R", then

|21 + 2+ - + || = A% + 23| + - - - + 23]

Proof:
The fact that Z; - £; = O whenever 7 # 7J gives

—

|21+ T+ + TP = (B + To+ -+ F) - (L + T2+ + Tn)

= (

— —

1T+ T2 2+"'+fk'fk)+zfi'fj
i#]

81

= [|Z1|]” + ||Z2]]> + - - + ||Z] > + 0

This is what we wanted.

If ¥ and W are orthogonal, nonzero vectors in RS, then they are
certainly not parallel, and so are linearly independent Example 5.2.7.
The next theorem gives a far-reaching extension of this observation.
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Theorem 5.3.5

Every orthogonal set in IR"" is linearly independent.

Proof:
Let {fl , :fg, ceey fk} be an orthogonal set in IR" and suppose
a linear combination vanishes, say:

W + tody + - - - + tp T = 0. Then

0251-6251 . (tlﬂ_ﬂ +t2£2+"'+tkfk)
= tl(fl -51) +t2(fl -fz) + - +tk(f1 . fk)
= t1]|Z1|* + £2(0) + - - - + £x(0)

=t1||1]?

Since ||Z1||? # 0, this implies that £; = (. Similarly t; = 0
for each 7.

@ An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=76#h5p-104

Theorem 5.3.6

Let {fl, fo, . oo, fm} be an orthogonal basis of a
subspace U of R™. If I is any vector in [/, we have

. (2 A\ (ZR) & Zfm\ =
=== | A+ =2 | At | = |
: <|If1!|2)1 <|Ilel2)1 <||fm||2)

Proof:

since  {f1,fo,--.,fm} spans U, we have
X =1t1f1 +tafo+ -+t [ where the t; are scalars. To
find ¢; we take the dot product of both sides with f7:
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Z-fi=Mmf+tfot - +tmfm) Ao
=t1(fi- i) +t2(fo- fi) + -+t fn - 1)
= t1||f1][% + t2(0) + - - - + £ (0)
= t1]| 1

Since f1 # 0, this gives t1 = folfﬁQ Similarly, t; = ||xf»]|c|12
7

for each 7.
The expansion in Theorem 5.3.6 of I as a linear combination

of the orthogonal basis {fl, fg, ceey fm} is called the Fourier
- f;

expansion of I, and the coefficients t1 = AL are called the
7

Fourier coefficients. Note that if {f_i, f;, cee ]Fm} is actually

orthonormal, then t; = & - f; for each i.

Example 5.3.7

Expand 15 — (a, b, c, d) as a linear combination of the

orthogonal basis { JFL f;, f;,, ﬁl} of R4 given in
Example 5.3.6.

Vector Space [latex size ="40"]\mathbb{R}"n[ /latex] | 291



Solution:
We have fl = (1, 1,1, —1), fz = (1,0, 1,2),
f3 = <_17 07 17 O),and f4 — (_17 37 _17 ]-) so the Fourier

coefficients are

tlzll?lﬁ? =la+b+c+d) tgzllgjé]ﬁQ =L1(-a+o)
wofhoderern s hCarmoceo
The reader can verify that indeed

T =t1f1 + tofo + t3f3 + tafa

5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the
definition of the rank of a matrix given in Section 1.2, and to study
its properties. This requires that we deal with rows and columns
in the same way. While it has been the custom to write the 7
-tuples as columns, in this section we will frequently write them
as rows. Subspaces, independence, spanning, and dimension are
defined for rows using matrix operations, just as for columns. If A
isan 7 X 7 matrix, we define:

Definition 5.10 Column and Row Space of a Matrix
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The column space, col A, of A is the subspace of R™
spanned by the columns of A.

The row space, 70w A, of A is the subspace of R"
spanned by the rows of A.

Lemma 5.4.1

Let A and B denote M X 7 matrices.

1. If A — B by elementary row operations, then
rowA = rowbB.

2. If A — B by elementary column operations, then
colA = col B.

Proof:

We prove (1); the proof of (2) is analogous. It is enough to do
it in the case when A — B by a single row operation. Let
Ri, Ro,..., R, denote the rows of A. The row operation
A — B either interchanges two rows, multiplies a row by a
nonzero constant, or adds a multiple of a row to a different row. We
leave the first two cases to the reader. In the last case, suppose that
a times row P is added to row g where p < . Then the rows of
Bare Ry, ... yRp,...,Rqg+aR,, ..., Ry, and Theorem
5.1.1 shows that

span{R1,...,Rp,...,Rg,..., R} = span{R1,..., Ry, ..., Rg+aRp,...,Rn}
Thatis, row A = rowB.
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If A is any matrix, we can carry A — R by elementary row
operations where R is a row-echelon matrix. Hence
rowA = row R by Lemma 5.4.1; so the first part of the following
result is of interest.

Lemma 5.4.2

If R is a row-echelon matrix, then

1. The nonzero rows of I are a basis of row R.
2. The columns of 7 containing leading ones are a
basis of ol R.

Proof:

The rows of I are independent, and they span rowR, by
definition. This proves (1).

Let 5j1 , 5}2 ey Ej'r‘ denote the columns of [ containing
leading 1s. Then {6117 5}2, ceey 5}'7,} is independent because the
leading 1s are in different rows (and have zeros below and to the left
of them). Let U denote the subspace of all columns in R™ in which
the last 770 — T entries are zero. Then dimU = r (it is just R"
with extra zeros). Hence the independent set {5}1 , EjQ sy E}T}
is a basis of {J by Theorem 5.27. Since each ¢}, is in col R, it
follows that col R = U, proving (2).

Let A be any matrix and suppose A is carried to some row-
echelon matrix /7 by row operations. Note that R is not unique. In
Section 1.2 we defined the rank of A, denoted rank A, to be the
number of leading 1s in R, that is the number of nonzero rows of
R. The fact that this number does not depend on the choice of R
was not proved. However part 1 of Lemma 5.4.2 shows that
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rankA = dim(rowA)

and hence that rank A is independent of R.
Lemma 5.4.2 can be used to find bases of subspaces of R

(written as rows). Here is an example.

Example 5.4.1

Find a basis of

U = span{(1,1,2,3),(2,4,1,0), (1,5, —4,-9)}

Solution:
1 1 2 3
U is the row space of | 2 4 1 (O | . This matrix has
1 5 —4 -9
1 1 2 3
row-echelon form 0 1 _% -3 1, SO
0 0 0 0
—3)} is basis of U by Lemma 5.4.1.

{(1,1,2,3),(0,1, -3
Note that {(1,1,2,3

that avoids fractions.

),(0,2,—3,—6)} is another basis

Theorem 5.4.1 Rank Theorem

Let A denote any 72 X T matrix of rank 7. Then
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dim(colA) = dim(rowA) =r

Moreover, if A is carried to a row-echelon matrix I, by
row operations, then

1. The 7" nonzero rows of I3, are a basis of Tow A.
2. Iftheleading 1slie in columns 1, J2, . . . , Jy of

R, then columns j1, jo, . . ., j of A are a basis of
col A.

Proof:

We have T0wWA = rowR, by Lemma 5.4.1, so (1) follows from
5.4.2. Moreover, & = U A for some invertible matrix {/. Now
write A = [ Cl Cy ... GCp ] where €7, Ca, . . . , Cp, are
the columns of A. Then

R=UA=U[¢ & ... & |=[U&a U& - UG |

Thus, in the notation of (2), the set
B = {Uajl 5 UE}Q, ey UE}'T} isa ba.sis of col R by Lemma
5.4.2. So, to prove (2) and the fact that dlm(COlA) =T, itis
enough to show that D = {¢},, Cj,,...,Cj,} is a basis of
col A. First, D is linearly independent because [J is invertible
(verify), so we show that, for each j, column Ej is a linear
combination of the Ejz But UE}- is column j of I, and so is
a linear combination of the Uc;, say
UE}' = aanjl + G/QUE}‘Q + -+ aTUajr where each @;
is a real number.

Since U is invertible, it follows that
Ej = a15j1 + azcj, + -+ arng and the proof is
complete.
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Example 5.4.2

1 2 2 -1
Compute the rank of 4 = 3 6 5 0 | and
1 2 1 2

find bases for 70w A and col A.

Solution:
The reduction of A to row-echelon form is as follows:

1 2 2 -1 1 2 2 —1 1 2 2 —1

3 6 5 0|—=1]00 -1 3[—=1(00 -1

1 2 1 2 0 0 -1 3 0 0 0 0
Hence rankA = 2, and

{f1 22 -1],J]0o 01 =3]}
is a basis of 70w A by 5.4.2. Since the leading 1s are in columns 1
and 3 of the row-echelon matrix, Theorem 5.4.1 shows that columns

1and 3 of A are a basis
1 2
31,15 of col A.
1 1
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Corollary 5.4.1

If A is any matrix, then rank A = rank(AT).

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-116

If A is an ™M X N matrix, we have colA C R™ and
rowA C R" Hence  Theorem  5.2.8 shows  that
dim(col A) < dim(R™) =m and
dim(rowA) < dim(R™) = n. Thus Theorem 5.4.1 gives:

Corollary 54.2

If A isan 7 X 71 matrix, then rank A < m and
rankA < n.
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Corollary 54.3

rankA = rank(UA) = rank(AV') whenever

U and V are invertible.

Proof:
Lemma 54.1 gives TankA = rank:(UA). Using this and
Corollary 5.4.1 we get

rank(AV) = rank(AV)T = rank(VT AT) = rank(AT) = rankA

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-117

Lemma 5.4.3
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Let A, U, and V be matrices of sizes M0 X N, p X m,
and . X q respectively.

1. COZ(AV) C col A, with equality it VV' = I,
for some V.

2. row(UA) C rowA, with equality if
U'U = I,,, for some U’

Proof:

For (1), write V = [171, 172, Ce ,ﬁq] where ﬁj is column 7
of V. Then we have AV = [A¥), AUs, ..., Aty], and each
AUj is in col A by Definition 2.4. It follows that COZ(AV) -
col A. If VvV = o we obtain
col A = col [(AV)V’] C col(AV) in the same way. This
proves (1).

As to (2), we have
col [(UA)T} = col(ATUT) C col(AT) by (1), from
which row(U A) C rowA. 1t U'U = I, this is equality as
in the proof of (1).

Corollary 5.4.4

If Ais™ X Nand Bis™ X ™M, then
rankAB < rankAand rankAB < rankB.

Proof:
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By Lemma 54.3 col(AB) C col A and
row(BA) C rowA, so Theorem 5.4.1 applies.
In Section 5.1 we discussed two other subspaces associated with

an M X 1 matrix A: the null space null (A) and the image space
im(A)

null(A) = {Z in R" | AZ = 0} and im(A) = {AZ | ¥ in R"}

Using rank, there are simple ways to find bases of these spaces.
If A has rank r, we have zm(A) = COZ(A) by Example 5.1.8,
so dim[im(A)] = dim[col(A)] = r. Hence Theorem 5.4.1
provides a method of finding a basis of zm(A) This is recorded as
part (2) of the following theorem.

Theorem 5.4.2

Let A denote an ™ X M matrix of rank 7. Then

1. The T — T basic solutions to the system
AT = 6 provided by the gaussian algorithm are a
basis of null(A), so dim[null(A)] = n — r.
2.  Theorem 5.4.1 provides a basis of

im(A) = col(A),and dim[im(A)] = r.

Proof:
It remains to prove (1). We already know (Theorem 2.2.1) that
null(A) is spanned by the 7@ — T* basic solutions of AT =0
Hence using Theorem 5.2.7, it suffices to show that

dim[null(A)] =n —1r.Solet {fl, . . ,fk} be a basis of
null (A), and extend it to a basis
{fl, e ,fk, ifk;+1, e ,fn} of R™ (by Theorem 5.2.6). It is
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enough to show that {Afk+1, RN Afn} is a basis of im(A);
thenn — k =1 by the above and so kE=n—ras required.

Spanning. Choose AZ in im(A), Z in R™ and write
T=a1Z1+ -+ apZ + a1 1Txr1 + - + anZy
where the a; are in R.

Then AZ = ap 1 ATy + - - - + an ATy, because
{.fl, SN ,fk} - null(A)

Independence. Let tf 1 AZk11 + - + L, AT, = 0, t;
in R. Then tp1Tpi1 + -+ tnTy is in NullA, so
b1 Thg1 + -+ Ty = 6127 + - - - + 1Ty, for some
t1,...,lgin IR. But then the independence of the ; shows that
t; = O for every 1.

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-111

Example 5.4.3

1 -2 1 1
fA= —1 2 0 1 |,findbases of
2 -4 1 0

null (A) and Zm(A) and so find their dimensions.
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Solution:
If T is in null(A), then AT = 0, so T is given by solving

the system AT = (). The reduction of the augmented matrix to
reduced form is

1 -2 1 110 1 -2 0 —-110
-1 2 01j]0]| =10 01 20
2 =4 1 0]0 0O 00 010

Hence 7" = rank(A) = 2. Here, zm(A) = COl(A) has
basis
1 1
—-11,10 by Theorem 5.4.1 because the leading 1s
1

2
are in columns 1 and 3. In particular, dzm[zm(A)] =2 =17ras
in Theorem 5.4.2.

Turning to null(A), we use gaussian elimination. The leading
variables are gy and I3, so the nonleading variables become
parameters: Lo = S and X4 = t. It follows from the reduced
matrix that 11 = 25 + ¢ and 3 = —21, so the general
solution is

1 2s 4+t 2 1
S x| S o . S |1 B 0
T = o | = oy = s¥1+tTs where ¥ = E and xo = 9
X4 t 0 1
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Hence null (A) But 7 and IT's are solutions (basic), so

null(A) = span{r, ¥a}

However Theorem 5.4.2 asserts that {fl,fg} is a basis of
null(A). (In fact it is easy to verify directly that {fl, fg} is
independent in this case.) In particular,
dim[null(A)] =2=n—r.

Let A be an ™ X M matrix. Corollary 5.4.2 asserts that
rankA < m and rankA < n, and it is natural to ask when
these extreme cases arise. If €1, Ca, . . . , Cy, are the columns of
A, Theorem 5.2.2 shows thzi:c {51, Coyevny 5n} spans R"" if and

only if the system AX = b is consistent for every b in R™, and
that {51, 52, ceey En} is independent if and only if Ar =0, T
in R™, implies Z = (. The next two useful theorems improve on

both these results, and relate them to when the rank of Aisnor
m.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-113

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-114
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-115

Theorem 5.4.3

The following are equivalent for an 772 X 70 matrix A:

rankA = n.

The rows of A span R".

The columns of A are linearly independent in R™,
The T X 7 matrix AT A is invertible.

C A = I,, for some 0 X M matrix C'.

If A¥ = O,fian,thenf =0.

S Gk W =

Proof:

(1) = (2). We have row A C R", and dim(rowA) = n by
1), sorowA = R" by Theorem 5.2.8. This is (2).

(2) = (3). By (2), rowA = R", so rank A = n. This means
dim(COlA) = n. Since the 7 columns of A span col A, they
are independent by Theorem 5.2.7.
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B) = @).1f (ATA)CE = 6, Z in R™, we show that & = 6
(Theorem 2.4.5). We have
|AZ|]2 = (A2)T A% = T AT Az = 370 = 0

—

Hence AT = 6, sor = 6 by (3) and Theorem 5.2.2.
(4) — (5). Given (4), take C' = (AT A)~1 AT

G) — (6). If AX = 0, then left multiplication by C' (from (5))
gives T = 6

(6) — (1). Given (6), the columns of A are independent by
Theorem 5.2.2. Hence dzm(colA) = N, and (1) follows.

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-118

Theorem 5.4.4

The following are equivalent for an 772 X 70 matrix A:

rankA =m.

The columns of A span R™.

The rows of A are linearly independent in IR".
The M X M matrix AAT is invertible.

W N =
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5. AC = I, for some 1 X M matrix C'.

= —
6. The system AT = b is consistent for every b in

R™.

Proof:

1) — . By (1), dim(colA =m, so colA =R"™ by
Theorem 5.2.8.

(2) = (3). By (2), colA = R™ so rank A = m. This means
dim(rowA) = M. Since the M rows of A span 70w A, they
are independent by Theorem 5.2.7.

() — (4). We have Tank A = m by (3), so the 12 X M matrix
AT has rank m. Hence applying Theorem 5.4.3 to AT in place of
A shows that (AT)TAT is invertible, proving (4).

(4) — (5). Given (4), take C' = AT (AAT) Lin(5).

(5) — (6). Comparing columns in AC' = I,,, gives AE}' = 67'
for each 7, where EJ and ¢€; denote column 7 of C and I,

. . . m . T m
respectively. Given b in R"", write b = Z =1

Then AZ = b holds with & = Z;n:l Tjgj as the reader can

Tji€4, T in R.

verify.
(6) — (1). Given (6), the columns of A span R"” by Theorem 5.2.2.
Thus col A = R" and (1) follows.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-110
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-112

55 Similarity and Diagonalization

Similar Matrices

Definition 5.11 Similar Matrices

If A and B are 70 X 70 matrices, we say that A and B
are similar, and write A ~ B,ift B = P 1L AP for
some invertible matrix .

Note that A ~ B if and only if B = QAQ ™! where () is
invertible (write P -1 = Q). The language of similarity is used
throughout linear algebra. For example, a matrix A is diagonalizable
if and only if it is similar to a diagonal matrix.
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If A ~ B, then necessarily B ~ A.Tosee why, suppose that
B =P 'AP. tThen A= PBP™ ! = Q_lBQ where
Q —= P~ is invertible. This proves the second of the following
properties of similarity:

1. A~ A for all square matrices A.

2. If A~ B, then B ~ A.
52 3- If A~ B and B ~ A, then A~ C.

These properties are often expressed by saying that the similarity
relation ~ is an equivalence relation on the set of 72 X 70 matrices.
Here is an example showing how these properties are used.

Example 5.5.1

If A is similar to /3 and either A or B is diagonalizable,
show that the other is also diagonalizable.

Solution:

We have A ~ B. Suppose that A is diagonalizable, say
A ~ D where D is diagonal. Since B ~ A by (2) of (5.2), we
have B ~ A and A ~ D.Hence B ~ D by (3) of (5.2), so B
is diagonalizable too. An analogous argument works if we assume
instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A~Bthen A '~B ! AT~ BT and AF ~ B* for all integers k > 1.
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-127

Definition 5.12 Trace of a matrix

The trace £7" A of an 72 X 7 matrix A is defined to be
the sum of the main diagonal elements of A.

In other words:

It is evident that t7(A 4+ B) =trA+trB and that
tT’(CA) = ctr A holds for all 0 X 7 matrices A and B and all
scalars C. The following fact is more surprising.

Lemma 5.5.1
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Let A and B be ™ X 1 matrices. Then
tr(AB) = tr(BA).

Proof:

write A = [a;;] and B = b;;]. For each 1, the (1,%)-entry
d; of the matrix AB is given as follows:
di = ai1bii + aizbai + -+ + ainbni = ) aijbj;

J
Hence

tT(AB) :dl—i-dz—i—"'—i-dn:Zdi:Z Zaijbji
{ J

7

Similarly we have tT(BA) = ZZ(ZJ bijaji)- Since these

two double sums are the same, Lemma 5.5.1 is proved.

Theorem 5.5.1

If A and B are similar 70 X 7 matrices, then A and B
have the same determinant, rank, trace, characteristic
polynomial, and eigenvalues.

Proof:
Let B= P~ 1 A P for some invertible matrix IP. Then we have
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detB = det(P~')det AdetP = detA because det(P~') = 1/detP

Similarly, rankB = rank(P7'AP) = rankA by
Corollary 5.4.2. Next Lemma 5.5.1 gives

tr(P~'AP) = tr [P7'(AP)] =tr [([AP)P'] =trA

As to the characteristic polynomial,

cp(z) = det(zI — B) = det{z(P~'IP) — P"'AP}
— det{P~1(zI — A)P}
= det(zl — A)

= c4(x)

Finally, this shows that A and B have the same eigenvalues
because the eigenvalues of a matrix are the roots of its
characteristic polynomial.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-119
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Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not
guarantee that two matrices are similar. The matrices

1 1 1 0
A= l 0 1 ]andl— [ 0 1 1havethesame

determinant, rank, trace, characteristic polynomial, and
eigenvalues, but they are not similar because
P~ 1IP = Ifor any invertible matrix P.

E An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-124

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an
invertible matrix P such that P~ AP = Disa diagonal matrix,
that is if A is similar to a diagonal matrix D\index{diagonal
matrices}. Unfortunately, not all matrices are diagonalizable, for
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example { (1) 1 } Determining whether A is diagonalizable is

closely related to the eigenvalues and eigenvectors of A. Recall that
a number A is called an eigenvalue of A if AX = AT for some
nonzero column & in R, and any such nonzero vector T is called
an eigenvector of A corresponding to A (or simply a A-eigenvector
of A). The eigenvalues and eigenvectors of A are closely related to
the characteristic polynomial C 4 (x) of A, defined by
ca(x) =det(xl — A)

If A is ™ X N this is a polynomial of degree 71, and its

relationship to the eigenvalues is given in the following theorem.

Theorem 5.5.2

Let A be an ™ X 7 matrix.

1. The eigenvalues \ of A are the roots of the
characteristic polynomial C 4 (:c) of A.

2. The \-eigenvectors 2 are the nonzero solutions to
the homogeneous system

M—A)zZ=0

of linear equations with A — A as coefficient matrix.

The next theorem will show us the condition when a square matrix
is diagonalizable.

Theorem 5.5.3
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Let A be an 70 X 7 matrix.

1. Ais diagonalizable if and only if IR" has a basis

{:i"l, fQ, coog fn} consisting of eigenvectors of A.
2. When this is the case, the matrix
P = [ 1 Ty - I } is invertible and

P71AP = diag()\l, Ao, ..., )\n) where, for

each 7, \; is the eigenvalue of A corresponding to ;

The next result is a basic tool for determining when a matrix is
diagonalizable. It reveals an important connection between
eigenvalues and linear independence: Eigenvectors corresponding

to distinct eigenvalues are necessarily linearly independent.

Theorem 5.5.4

Let fl, fz, 3000 .fk be eigenvectors corresponding to
distinct eigenvalues A1, Ao, . .., Ak of an 70 X T matrix
A. Then {fl, 7 T fk} is a linearly independent set.

Theorem 5.5.5
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If A is an 72 X 70 matrix with n distinct eigenvalues,
then A is diagonalizable

Example 5.5.4

1 0 0
Show that A = 1 2 3 | isdiagonalizable.
-1 1 0
Solution:
A routine computation shows that

CA(QZ‘) = (:I? — 1)($ — 3)(:1: + 1) and so has distinct
eigenvalues 1, 3, and — 1. Hence Theorem 5.5.5 applies.

Definition 5.1.3 Eigenspace of a Matrix

If A is an eigenvalue of an 70 X 7 matrix A, define the
eigenspace of A corresponding to \ by

Ex(A) = {Z in R" | A7 = AT}
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@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-120

This is a subspace of R™ and the eigenvectors corresponding to
A are just the nonzero vectors in [ )\(A). In fact ) (A) is the
null space of the matrix ()\I - A):

E\(A) ={Z | (A — A)Z =0} = null(\ — A)
The basic solutions of the homogeneous system
()\I — A)f = 6 given by the gaussian algorithm form a basis for
E\ (A) In particular
(5.5)
dimEx(A) is the number of basic solutions Z of (A\I — A)Z =0

Now recall that the multiplicity of an eigenvalue A of A is the
number of times A occurs as a root of the characteristic polynomial
c A(m) of A. In other words, the multiplicity of A is the largest
integer m > 1 such that

ca(z) = (z = A)"g()

for some polynomial g (.’E) Because of (5.5), a square matrix is
diagonalizable if and only if the multiplicity of each eigenvalue A
equals dim [E' A (A)] We are going to prove this, and the proof
requires the following result which is valid for any square matrix,
diagonalizable or not.

ﬁ An interactive H5P element has been excluded from this
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N\ yersion of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/
linearalgebrautm/?p=76#h5p-122

Lemma 5.5.3

Let A be an eigenvalue of multiplicity 112, of a square

matrix A. Then dim [E)(A)] < m.

It turns out that this characterizes the diagonalizable 70 X T
matrices A for which ¢ A(.I) factors completely over IR. By this
we mean that CA(zL‘) = (ZL‘ — )\1)(:6 - /\2) cee (m — )\n)»
where the \; are real numbers (not necessarily distinct); in other
words, every eigenvalue of A is real. This need not happen (consider

0 -1 , ,
A= 1 0 ), which leads us to the general conclusion

regarding when a square matrix is diagonalizable.

Theorem 5.5.6
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The following are equivalent for a square matrix A for
which C4 (:B) factors completely.

1. Ais diagonalizable.
2. dim [E A (A)] equals the multiplicity of A for
every eigenvalue A of the matrix A

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm /?p=76#h5p-123

Example 5.5.5

5 8 16
IfA = 4 1 8 | and
—4 —4 -—-11
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B = 2 1 —2 | show that A is diagonalizable
-1 0 -2
but B is not.
Solution:
We have CA(IL’) = (33 + 3)2(117 - 1) so the eigenvalues are
A = —3 and A9 = 1. The corresponding eigenspaces are

E\, (A) = span{#, 7o} and E),(A) = span{zs}

where

—1 —2 2
flz 1 7_)2: 0 7_)3:[ 1
0 1 -1

as the reader can verify. Since {a_f 1, 52} is independent, we have
dim(E), (A)) = 2 which is the multiplicity of \;. Similarly,
di?ﬂ(E)\2 (A)) = 1 equals the multiplicity of \9. Hence A is
diagonalizable
by 5.5.6, and a diagonalizing matrix is P = [ 1 Ty I3 }
Turning to B, cp(x) = (x + 1)2(SL’ —3) so the
eigenvalues are A\ = —1 and A9 = 3. The corresponding
eigenspaces are Ey, (B) = span{y: } and
E),(B) = span{ya} where
gl = 2 7372 = 6
1 —1

Here dim(FE A\ (B)) = 1 is smaller than the multiplicity of
A1, so the matrix B is not diagonalizable, again by Theorem 5.5.6.
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The fact that dim(EAl (B)) — 1 means that there is no
possibility of finding three linearly independent eigenvectors.

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-121

a An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-125

@ An interactive H5P element has been excluded from this
version of the text. You can view it online here:

https: //ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-126
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