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1. System of Linear Equations

1.1 Solutions and elementary operations

Practical problems in many fields of study—such as biology,
business, chemistry, computer science, economics, electronics,
engineering, physics and the social sciences—can often be reduced
to solving a system of linear equations. Linear algebra arose from
attempts to find systematic methods for solving these systems, so it
is natural to begin this book by studying linear equations.

If , , and are real numbers, the graph of an equation of the
form

is a straight line (if and are not both zero), so such an equation
is called a linear equation in the variables and . However, it
is often convenient to write the variables as ,
particularly when more than two variables are involved. An equation
of the form

is called a linear equation in the variables .
Here denote real numbers (called the coefficients
of , respectively) and is also a number (called
the constant term of the equation). A finite collection of linear
equations in the variables is called a system of
linear equations in these variables. Hence,

is a linear equation; the coefficients of , , and are , ,
and , and the constant term is . Note that each variable in a linear
equation occurs to the first power only.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-1

Given a linear equation ,
a sequence of numbers is called a solution to
the equation if

that is, if the equation is satisfied when the substitutions
are made. A sequence of

numbers is called a solution to a system of equations if it is a
solution to every equation in the system.

A system may have no solution at all, or it may have a unique
solution, or it may have an infinite family of solutions. For instance,
the system , has no solution because the
sum of two numbers cannot be 2 and 3 simultaneously. A system
that has no solution is called inconsistent; a system with at least
one solution is called consistent.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-2
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Show that, for arbitrary values of and ,

is a solution to the system

Simply substitute these values of , , , and in each
equation.

Because both equations are satisfied, it is a solution for all choices
of and .

The quantities and in this example are called parameters, and
the set of solutions, described in this way, is said to be given in
parametric form and is called the general solution to the system. It
turns out that the solutions to every system of equations (if there
are solutions) can be given in parametric form (that is, the variables

, , are given in terms of new independent variables , ,
etc.).
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-7

When only two variables are involved, the solutions to systems of
linear equations can be described geometrically because the graph
of a linear equation is a straight line if and
are not both zero. Moreover, a point with coordinates
and lies on the line if and only if —that is when

, is a solution to the equation. Hence the solutions to
a system of linear equations correspond to the points that
lie on all the lines in question.

In particular, if the system consists of just one equation, there
must be infinitely many solutions because there are infinitely many
points on a line. If the system has two equations, there are three
possibilities for the corresponding straight lines:

• The lines intersect at a single point. Then the system has a
unique solution corresponding to that point.

• The lines are parallel (and distinct) and so do not intersect.
Then the system has no solution.

• The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-132

With three variables, the graph of an equation
can be shown to be a plane and so again

provides a “picture” of the set of solutions. However, this graphical
method has its limitations: When more than three variables are
involved, no physical image of the graphs (called hyperplanes) is
possible. It is necessary to turn to a more “algebraic” method of
solution.

Before describing the method, we introduce a concept that
simplifies the computations involved. Consider the following system

of three equations in four variables. The array of numbers

occurring in the system is called the augmented matrix of the
system. Each row of the matrix consists of the coefficients of the
variables (in order) from the corresponding equation, together with
the constant term. For clarity, the constants are separated by a
vertical line. The augmented matrix is just a different way of
describing the system of equations. The array of coefficients of the
variables
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is called the coefficient matrix of the system and

is called the constant matrix of the system.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-130

Elementary Operations

The algebraic method for solving systems of linear equations is
described as follows. Two such systems are said to be equivalent if
they have the same set of solutions. A system is solved by writing
a series of systems, one after the other, each equivalent to the
previous system. Each of these systems has the same set of
solutions as the original one; the aim is to end up with a system
that is easy to solve. Each system in the series is obtained from the
preceding system by a simple manipulation chosen so that it does
not change the set of solutions.

As an illustration, we solve the system ,
in this manner. At each stage, the corresponding

augmented matrix is displayed. The original system is
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First, subtract twice the first equation from the second. The
resulting system is

which is equivalent to the original. At this stage we obtain
by multiplying the second equation by . The result is

the equivalent system

Finally, we subtract twice the second equation from the first to
get another equivalent system.

Now this system is easy to solve! And because it is equivalent to
the original system, it provides the solution to that system.

Observe that, at each stage, a certain operation is performed
on the system (and thus on the augmented matrix) to produce an
equivalent system.

Definition 1.1 Elementary Operations
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The following operations, called elementary operations,
can routinely be performed on systems of linear equations
to produce equivalent systems.

1. Interchange two equations.
2. Multiply one equation by a nonzero number.
3. Add a multiple of one equation to a different

equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is
performed on a system of linear equations. Then the
resulting system has the same set of solutions as the
original, so the two systems are equivalent.

Elementary operations performed on a system of equations produce
corresponding manipulations of the rows of the augmented matrix.
Thus, multiplying a row of a matrix by a number means
multiplying every entry of the row by . Adding one row to another
row means adding each entry of that row to the corresponding
entry of the other row. Subtracting two rows is done similarly. Note
that we regard two rows as equal when corresponding entries are
the same.

8 | System of Linear Equations



An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-8

In hand calculations (and in computer programs) we manipulate the
rows of the augmented matrix rather than the equations. For this
reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a
matrix.

1. Interchange two rows.
2. Multiply one row by a nonzero number.
3. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix
of the form

where the asterisks represent arbitrary numbers. In the case of
three equations in three variables, the goal is to produce a matrix of
the form
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This does not always happen, as we will see in the next section.
Here is an example in which it does happen.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-131

Example 1.1.3 Find all solutions to the following system of equations.

Solution:
The augmented matrix of the original system is
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To create a in the upper left corner we could multiply row 1
through by . However, the can be obtained without introducing
fractions by subtracting row 2 from row 1. The result is

The upper left is now used to “clean up” the first column, that is
create zeros in the other positions in that column. First subtract
times row 1 from row 2 to obtain

Next subtract times row 1 from row 3. The result is

This completes the work on column 1. We now use the in the
second position of the second row to clean up the second column
by subtracting row 2 from row 1 and then adding row 2 to row 3. For
convenience, both row operations are done in one step. The result
is
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Note that the last two manipulations did not affect the first
column (the second row has a zero there), so our previous effort
there has not been undermined. Finally we clean up the third
column. Begin by multiplying row 3 by to obtain

Now subtract times row 3 from row 1, and then add times row
3 to row 2 to get

The corresponding equations are , , and
, which give the (unique) solution.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-133
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1.2 Gaussian elimination

The algebraic method introduced in the preceding section can be
summarized as follows: Given a system of linear equations, use a
sequence of elementary row operations to carry the augmented
matrix to a “nice” matrix (meaning that the corresponding equations
are easy to solve). In Example 1.1.3, this nice matrix took the form

The following definitions identify the nice matrices that arise in
this process.

Definition 1.3 row-echelon form (reduced)

A matrix is said to be in row-echelon form (and will be
called a row-echelon matrix if it satisfies the following
three conditions:

1. All zero rows (consisting entirely of zeros) are at
the bottom.

2. The first nonzero entry from the left in each
nonzero row is a , called the leading for that row.

3. Each leading is to the right of all leading s in the
rows above it.
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A row-echelon matrix is said to be in reduced row-
echelon form (and will be called a reduced row-echelon
matrix if, in addition, it satisfies the following condition:

4. Each leading is the only nonzero entry in its
column.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-3

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-6

The row-echelon matrices have a “staircase” form, as indicated by
the following example (the asterisks indicate arbitrary numbers).
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The leading s proceed “down and to the right” through the matrix.
Entries above and to the right of the leading s are arbitrary, but
all entries below and to the left of them are zero. Hence, a matrix
in row-echelon form is in reduced form if, in addition, the entries
directly above each leading are all zero. Note that a matrix in
row-echelon form can, with a few more row operations, be carried
to reduced form (use row operations to create zeros above each
leading one in succession, beginning from the right).

The importance of row-echelon matrices comes from the
following theorem.

Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon
form by a sequence of elementary row operations.

In fact we can give a step-by-step procedure for actually finding a
row-echelon matrix. Observe that while there are many sequences
of row operations that will bring a matrix to row-echelon form, the
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one we use is systematic and is easy to program on a computer.
Note that the algorithm deals with matrices in general, possibly with
columns of zeros.

Gaussian Algorithm

Step 1. If the matrix consists entirely of zeros, stop—it is
already in row-echelon form.

Step 2. Otherwise, find the first column from the left
containing a nonzero entry (call it ), and move the row
containing that entry to the top position.

Step 3. Now multiply the new top row by to create a
leading .

Step 4. By subtracting multiples of that row from rows
below it, make each entry below the leading zero. This
completes the first row, and all further row operations are
carried out on the remaining rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the
remaining rows.

The process stops when either no rows remain at step 5
or the remaining rows consist entirely of zeros.

Observe that the gaussian algorithm is recursive: When the first
leading has been obtained, the procedure is repeated on the
remaining rows of the matrix. This makes the algorithm easy to use
on a computer. Note that the solution to Example 1.1.3 did not use
the gaussian algorithm as written because the first leading was not
created by dividing row 1 by . The reason for this is that it avoids
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fractions. However, the general pattern is clear: Create the leading
s from left to right, using each of them in turn to create zeros below
it. Here is one example.

Example 1.2.2 Solve the following system of equations.

Solution:
The corresponding augmented matrix is

Create the first leading one by interchanging rows 1 and 2

Now subtract times row 1 from row 2, and subtract times row
1 from row 3. The result is
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Now subtract row 2 from row 3 to obtain

This means that the following reduced system of equations

is equivalent to the original system. In other words, the two have
the same solutions. But this last system clearly has no solution
(the last equation requires that , and satisfy

, and no such numbers exist). Hence the
original system has no solution.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-9

To solve a linear system, the augmented matrix is carried to reduced
row-echelon form, and the variables corresponding to the leading
ones are called leading variables. Because the matrix is in reduced
form, each leading variable occurs in exactly one equation, so that
equation can be solved to give a formula for the leading variable
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in terms of the nonleading variables. It is customary to call the
nonleading variables “free” variables, and to label them by new
variables , called parameters. Every choice of these
parameters leads to a solution to the system, and every solution
arises in this way. This procedure works in general, and has come to
be called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix\index{augmented
matrix}\index{matrix!augmented matrix} to a
reduced row-echelon matrix using elementary row
operations.

2. If a row occurs, the
system is inconsistent.

3. Otherwise, assign the nonleading variables (if any)
as parameters, and use the equations corresponding
to the reduced row-echelon matrix to solve for the
leading variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix
is carried only to row-echelon form. The nonleading variables are
assigned as parameters as before. Then the last equation
(corresponding to the row-echelon form) is used to solve for the
last leading variable in terms of the parameters. This last leading
variable is then substituted into all the preceding equations. Then,
the second last equation yields the second last leading variable,
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which is also substituted back. The process continues to give the
general solution. This procedure is called back-substitution. This
procedure can be shown to be numerically more efficient and so is
important when solving very large systems.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-10

Rank

It can be proven that the reduced row-echelon form of a matrix
is uniquely determined by . That is, no matter which series of row
operations is used to carry to a reduced row-echelon matrix,
the result will always be the same matrix. By contrast, this is not
true for row-echelon matrices: Different series of row operations
can carry the same matrix to different row-echelon matrices.

Indeed, the matrix can be carried (by one

row operation) to the row-echelon matrix , and

then by another row operation to the (reduced) row-echelon matrix

. However, it is true that the number of leading

1s must be the same in each of these row-echelon matrices (this will
be proved later). Hence, the number depends only on and not
on the way in which is carried to row-echelon form.
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Definition 1.4 Rank of a matrix

The rank of matrix is the number of leading s in any
row-echelon matrix to which can be carried by row
operations.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-136

Example 1.2.5

Compute the rank of .

Solution:
The reduction of to row-echelon form is
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Because this row-echelon matrix has two leading s, rank
.

Suppose that rank , where is a matrix with rows
and columns. Then because the leading s lie in different
rows, and because the leading s lie in different columns.
Moreover, the rank has a useful application to equations. Recall that
a system of linear equations is called consistent if it has at least one
solution.

Theorem 1.2.2

Suppose a system of equations in variables is
consistent, and that the rank of the augmented matrix is .

1. The set of solutions involves exactly
parameters.

2. If , the system has infinitely many solutions.
3. If , the system has a unique solution.

Proof:
The fact that the rank of the augmented matrix is means there

are exactly leading variables, and hence exactly
nonleading variables. These nonleading variables are all assigned
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as parameters in the gaussian algorithm, so the set of solutions
involves exactly parameters. Hence if , there is at
least one parameter, and so infinitely many solutions. If ,
there are no parameters and so a unique solution.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-11

Theorem 1.2.2 shows that, for any system of linear equations,
exactly three possibilities exist:

1. No solution. This occurs when a row
occurs in the row-echelon form. This is the case where the
system is inconsistent.

2. Unique solution. This occurs when every variable is a leading
variable.

3. Infinitely many solutions. This occurs when the system is
consistent and there is at least one nonleading variable, so at
least one parameter is involved.

GeoGebra Exercise: Linear Systems:

https://www.geogebra.org/m/cwQ9uYCZ
Please answer these questions after you open the webpage:
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1. For the given linear system, what does each one of them
represent?

2. Based on the graph, what can we say about the
solutions? Does the system have one solution, no solution
or infinitely many solutions? Why

3. Change the constant term in every equation to 0, what
changed in the graph?

4. For the following linear system:

Can you solve it using Gaussian elimination? When you
look at the graph, what do you observe?

Many important problems involve linear inequalities rather than
linear equations For example, a condition on the variables and
might take the form of an inequality rather than an
equality . There is a technique (called the simplex
algorithm) for finding solutions to a system of such inequalities that
maximizes a function of the form where and
are fixed constants.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-137
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-135

1.3 Homogeneous equations

A system of equations in the variables is called
homogeneous if all the constant terms are zero—that is, if each
equation of the system has the form

Clearly is a solution to such a
system; it is called the trivial solution. Any solution in which at least
one variable has a nonzero value is called a nontrivial solution.
Our chief goal in this section is to give a useful condition for a
homogeneous system to have nontrivial solutions. The following
example is instructive.

Example 1.3.1

Show that the following homogeneous system has
nontrivial solutions.
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Solution:
The reduction of the augmented matrix to reduced row-echelon

form is outlined below.

The leading variables are , , and , so is assigned as
a parameter—say . Then the general solution is
, , , . Hence, taking (say), we get a
nontrivial solution: , , , .

The existence of a nontrivial solution in Example 1.3.1 is ensured
by the presence of a parameter in the solution. This is due to the fact
that there is a nonleading variable ( in this case). But there must
be a nonleading variable here because there are four variables and
only three equations (and hence at most three leading variables).
This discussion generalizes to a proof of the following fundamental
theorem.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-138

Theorem 1.3.1

If a homogeneous system of linear equations has more
variables than equations, then it has a nontrivial solution (in
fact, infinitely many).

Proof:
Suppose there are equations in variables where ,

and let denote the reduced row-echelon form of the augmented
matrix. If there are leading variables, there are nonleading
variables, and so parameters. Hence, it suffices to show that

. But because has leading 1s and rows, and
by hypothesis. So , which gives .

Note that the converse of Theorem 1.3.1 is not true: if a
homogeneous system has nontrivial solutions, it need not have
more variables than equations (the system ,

has nontrivial solutions but .)

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-12

Theorem 1.3.1 is very useful in applications. The next example
provides an illustration from geometry.

Example 1.3.2

We call the graph of an equation
a conic if

the numbers , , and are not all zero. Show that there is
at least one conic through any five points in the plane that
are not all on a line.

Solution:
Let the coordinates of the five points be , ,

, , and . The graph of
passes through

if

This gives five equations, one for each , linear in the six variables
, , , , , and . Hence, there is a nontrivial solution by Theorem

1.1.3. If , the five points all lie on the line with
equation , contrary to assumption. Hence,
one of , , is nonzero.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-139

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the
same number of entries and corresponding entries are the same.
Let and be columns with the same number of entries. As for
elementary row operations, their sum is obtained by adding
corresponding entries and, if is a number, the scalar product
is defined by multiplying each entry of by . More precisely:

A sum of scalar multiples of several columns is called a linear
combination of these columns. For example, is a linear
combination of and for any choice of numbers and .
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Example 1.3.3

If and

then .

Example 1.3.4

Let

and . If

and ,

determine whether and are linear combinations of ,
and .
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Solution:
For , we must determine whether numbers , , and exist such

that , that is, whether

Equating corresponding entries gives a system of linear equations
, , and for , , and

. By gaussian elimination, the solution is ,
, and where is a parameter. Taking

, we see that is a linear combination of , , and .
Turning to , we again look for , , and such that

; that is,

leading to equations , , and
for real numbers , , and . But this time there is

no solution as the reader can verify, so is not a linear combination
of , , and .

Our interest in linear combinations comes from the fact that they
provide one of the best ways to describe the general solution of a
homogeneous system of linear equations. When
solving such a system with variables , write the
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variables as a column matrix: . The trivial solution is

denoted . As an illustration, the general solution in

Example 1.3.1 is , , , and , where
is a parameter, and we would now express this by

saying that the general solution is , where is

arbitrary.
Now let and be two solutions to a homogeneous system

with variables. Then any linear combination of these
solutions turns out to be again a solution to the system. More
generally:

In fact, suppose that a typical equation in the system is
, and suppose that

, are solutions. Then

and
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.

Hence is also a solution because

A similar argument shows that Statement 1.1 is true for linear
combinations of more than two solutions.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-129

The remarkable thing is that every solution to a homogeneous
system is a linear combination of certain particular solutions and,
in fact, these solutions are easily computed using the gaussian
algorithm. Here is an example.
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Example 1.3.5

Solve the homogeneous system with coefficient matrix

Solution:
The reduction of the augmented matrix to reduced form is

so the solutions are , , , and
by gaussian elimination. Hence we can write the general

solution in the matrix form
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Here and are particular solutions

determined by the gaussian algorithm.
The solutions and in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions

The gaussian algorithm systematically produces solutions
to any homogeneous linear system, called basic solutions,
one for every parameter.

Moreover, the algorithm gives a routine way to express every
solution as a linear combination of basic solutions as in Example
1.3.5, where the general solution becomes
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Hence by introducing a new parameter we can multiply
the original basic solution by 5 and so eliminate fractions.

For this reason:

Convention:

Any nonzero scalar multiple of a basic solution will still be
called a basic solution.

In the same way, the gaussian algorithm produces basic solutions
to every homogeneous system, one for each parameter (there are
no basic solutions if the system has only the trivial solution).
Moreover every solution is given by the algorithm as a linear
combination of
these basic solutions (as in Example 1.3.5). If has rank , Theorem
1.2.2 shows that there are exactly parameters, and so
basic solutions. This proves:

Theorem 1.3.2
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Let be an matrix of rank , and consider the
homogeneous system in variables with as coefficient
matrix. Then:

1. The system has exactly basic solutions, one
for each parameter.

2. Every solution is a linear combination of these basic
solutions.

Example 1.3.6

Find basic solutions of the homogeneous system with
coefficient matrix , and express every solution as a linear
combination of the basic solutions, where

Solution:
The reduction of the augmented matrix to reduced row-echelon

form is
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so the general solution is , ,
, , and where , , and are

parameters. In matrix form this is

Hence basic solutions are
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-140

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-128

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=5#h5p-13
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2. Matrix Algebra

Introduction

In the study of systems of linear equations in Chapter 1, we found
it convenient to manipulate the augmented matrix of the system.
Our aim was to reduce it to row-echelon form (using elementary
row operations) and hence to write down all solutions to the system.
In the present chapter we consider matrices for their own sake.
While some of the motivation comes from linear equations, it turns
out that matrices can be multiplied and added and so form an
algebraic system somewhat analogous to the real numbers. This
“matrix algebra” is useful in ways that are quite different from the
study of linear equations. For example, the geometrical
transformations obtained by rotating the euclidean plane about the
origin can be viewed as multiplications by certain matrices.
These “matrix transformations” are an important tool in geometry
and, in turn, the geometry provides a “picture” of the matrices.
Furthermore, matrix algebra has many other applications, some of
which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.

Arthur Cayley (1821-1895) showed his mathematical
talent early and graduated from Cambridge in 1842 as
senior wrangler. With no employment in mathematics in
view, he took legal training and worked as a lawyer while
continuing to do mathematics, publishing nearly 300
papers in fourteen years. Finally, in 1863, he accepted
the Sadlerian professorship in Cambridge and remained
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there for the rest of his life, valued for his administrative
and teaching skills as well as for his scholarship. His
mathematical achievements were of the first rank. In
addition to originating matrix theory and the theory of
determinants, he did fundamental work in group theory,
in higher-dimensional geometry, and in the theory of
invariants. He was one of the most prolific
mathematicians of all time and produced 966 papers.

2.1 Matrix Addition, Scalar Multiplication,
and Transposition

A rectangular array of numbers is called a matrix (the plural is
matrices), and the numbers are called the entries of the matrix.
Matrices are usually denoted by uppercase letters: , , , and so
on. Hence,

are matrices. Clearly matrices come in various shapes depending
on the number of rows and columns. For example, the matrix
shown has rows and columns. In general, a matrix with rows
and columns is referred to as an matrix or as having
size . Thus matrices , , and above have sizes
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, , and , respectively. A matrix of size is called a
row matrix, whereas one of size is called a column matrix.
Matrices of size for some are called square matrices.

Each entry of a matrix is identified by the row and column in
which it lies. The rows are numbered from the top down, and the
columns are numbered from left to right. Then the -entry of
a matrix is the number lying simultaneously in row and column .
For example,

A special notation is commonly used for the entries of a matrix. If
is an matrix, and if the -entry of is denoted as
, then is displayed as follows:

This is usually denoted simply as . Thus is the
entry in row and column of . For example, a matrix in
this notation is written

It is worth pointing out a convention regarding rows and columns:
Rows are mentioned before columns. For example:

42 | Matrix Algebra



• If a matrix has size , it has rows and columns.
• If we speak of the -entry of a matrix, it lies in row and

column .
• If an entry is denoted , the first subscript refers to the

row and the second subscript to the column in which
lies.

Two points and in the plane are equal if and
only if they have the same coordinates, that is and

. Similarly, two matrices and are called equal
(written ) if and only if:

1. They have the same size.
2. Corresponding entries are equal.

If the entries of and are written in the form ,
, described earlier, then the second condition takes the

following form:

Example 2.1.1

Given , and

discuss the possibility that , , .

Solution:
is impossible because and are of different sizes:
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is whereas is . Similarly, is impossible.
But is possible provided that corresponding entries are
equal:

means , , , and .

An interactive H5P element has been
excluded from this version of the text.
You can view it online here:

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#h5p-14

Matrix Addition

Definition 2.1 Matrix Addition

If and are matrices of the same size, their sum
is the matrix formed by adding corresponding

entries.

If and , this takes the form

Note that addition isnot defined for matrices of different sizes.
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Example 2.1.2

If

and ,

compute .

Solution:

Example 2.1.3

Find , , and if
.

Solution:
Add the matrices on the left side to obtain

Because corresponding entries must be equal, this gives three
equations: , , and . Solving
these yields , , .
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-15

If , , and are any matrices of the same size, then

(commutative law)

In fact, if and , then the -entries of
and are, respectively, and

. Since these are equal for all and , we get

The associative law is verified similarly.
The matrix in which every entry is zero is called the

zero matrix and is denoted as (or if it is important
to emphasize the size). Hence,

holds for all matrices . The negative of an
matrix (written ) is defined to be the matrix
obtained by multiplying each entry of by . If , this
becomes . Hence,

holds for all matrices where, of course, is the zero matrix of
the same size as .
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A closely related notion is that of subtracting matrices. If and
are two matrices, their difference is defined

by

Note that if and , then

is the matrix formed by subtracting corresponding
entries.

Example 2.1.4

Let ,

, .

Compute , , and .

Solution:
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Example 2.1.5

Solve

where is a matrix.

We solve a numerical equation by subtracting the
number from both sides to obtain . This also works
for matrices. To solve

simply subtract the matrix
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from both sides to get

The reader should verify that this matrix does indeed satisfy
the original equation.

The solution in Example 2.1.5 solves the single matrix equation
directly via matrix subtraction: .

This ability to work with matrices as entities lies at the heart of
matrix algebra.

It is important to note that the sizes of matrices involved in some
calculations are often determined by the context. For example, if

then and must be the same size (so that makes
sense), and that size must be (so that the sum is ). For
simplicity we shall often omit reference to such facts when they are
clear from the context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number
means multiplying every entry of that row by .

Definition 2.2 Matrix Scalar Multiplication
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More generally, if is any matrix and is any number,
the scalar multiple is the matrix obtained from by
multiplying each entry of by .

The term scalar arises here because the set of numbers from which
the entries are drawn is usually referred to as the set of scalars. We
have been using real numbers as scalars, but we could equally well
have been using complex numbers.

Example 2.1.6

If

and

compute , , and .

Solution:
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-16

If is any matrix, note that is the same size as for all
scalars . We also have

because the zero matrix has every entry zero. In other words,
if either or . The converse of this

statement is also true, as Example 2.1.7 shows.

Example 2.1.7
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If , show that either or .

Solution:
Write so that means for all

and . If , there is nothing to do. If , then
implies that for all and ; that is, .

For future reference, the basic properties of matrix addition and
scalar multiplication are listed in Theorem 2.1.1.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-29

Theorem 2.1.1

Let , , and denote arbitrary matrices
where and are fixed. Let and denote arbitrary
real numbers. Then

1. .
2. .
3. There is an matrix , such that
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for each .
4. For each there is an matrix, , such

that .
5. .
6. .
7. .
8. .

Proof:
Properties 1–4 were given previously. To check Property 5, let

and denote matrices of the same size. Then
, as before, so the -entry of

is

But this is just the -entry of , and it follows that
. The other Properties can be similarly

verified; the details are left to the reader.
The Properties in Theorem 2.1.1 enable us to do calculations with

matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies
that the sum

is the same no matter how it is formed and so is written as
. Similarly, the sum

is independent of how it is formed; for example, it equals both
and .

Furthermore, property 1 ensures that, for example,

In other words, the order in which the matrices are added does
not matter. A similar remark applies to sums of five (or more)
matrices.
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Properties 5 and 6 in Theorem 2.1.1 are called distributive
laws for scalar multiplication, and they extend to sums of more than
two terms. For example,

Similar observations hold for more than three summands. These
facts, together with properties 7 and 8, enable us to simplify
expressions by collecting like terms, expanding, and taking common
factors in exactly the same way that algebraic expressions involving
variables and real numbers are manipulated. The following example
illustrates these techniques.

Example 2.1.8

Simplify

where and are all matrices of the same size.

Solution:
The reduction proceeds as though , , and were variables.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-43

Transpose of a Matrix

Many results about a matrix involve the rows of , and the
corresponding result for columns is derived in an analogous way,
essentially by replacing the word row by the word column
throughout. The following definition is made with such applications
in mind.

Definition 2.3 Transpose of a Matrix

If is an matrix, the transpose of , written
, is the matrix whose rows are just the

columns of in the same order.

In other words, the first row of is the first column of (that is
it consists of the entries of column 1 in order). Similarly the second
row of is the second column of , and so on.
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Example 2.1.9

Write down the transpose of each of the following
matrices.

Solution:

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-17
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If is a matrix, write . Then is the th

element of the th row of and so is the th element of the th
column of . This means , so the definition of can
be stated as follows:

(2.1)
This is useful in verifying the following properties of

transposition.

Theorem 2.1.2

Let and denote matrices of the same size, and let
denote a scalar.

1. If is an matrix, then is an
matrix.

2. .
3. .
4. .

Proof:
Property 1 is part of the definition of , and Property 2 follows

from (2.1). As to Property 3: If , then , so (2.1)
gives

Finally, if , then where
Then (2.1) gives Property 4:
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There is another useful way to think of transposition. If
is an matrix, the elements

are called the main diagonal of . Hence the
main diagonal extends down and to the right from the upper left
corner of the matrix ; it is shaded in the following examples:

Thus forming the transpose of a matrix can be viewed as
“flipping” about its main diagonal, or as “rotating” through

about the line containing the main diagonal. This makes
Property 2 in Theorem~?? transparent.

Example 2.1.10

Solve for if

.

Solution:
Using Theorem 2.1.2, the left side of the equation is

58 | Matrix Algebra



Hence the equation becomes

Thus

, so

finally

.

Note that Example 2.1.10 can also be solved by first transposing
both sides, then solving for , and so obtaining .
The reader should do this.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-39

The matrix in Example 2.1.9 has the property

that . Such matrices are important; a matrix is called
symmetric if . A symmetric matrix is necessarily
square (if is , then is , so forces

). The name comes from the fact that these matrices exhibit
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a symmetry about the main diagonal. That is, entries that are
directly across the main diagonal from each other are equal.

For example, is symmetric when ,

, and .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-141

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-143

Example 2.1.11

If and are symmetric matrices, show that
is symmetric.
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Solution:
We have and , so, by Theorem 2.1.2, we

have . Hence is
symmetric.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-18

Example 2.1.12

Suppose a square matrix satisfies . Show
that necessarily .

Solution:
If we iterate the given equation, Theorem 2.1.2 gives

Subtracting from both sides gives , so
.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-142

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-30

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-31

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-44
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2.2 Matrix-Vector
Multiplication
Up to now we have used matrices to solve systems of linear
equations by manipulating the rows of the augmented matrix. In this
section we introduce a different way of describing linear systems
that makes more use of the coefficient matrix of the system and
leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the
plane with coordinates and are equal if and only
if and . Moreover, a similar condition applies to
points in space. We extend this idea as follows.

An ordered sequence of real numbers is
called an ordered –tuple. The word “ordered” here reflects our
insistence that two ordered -tuples are equal if and only if
corresponding entries are the same. In other words,

Thus the ordered -tuples and -tuples are just the ordered pairs
and triples familiar from geometry.

Definition 2.4 The set of ordered -tuples of real numbers

Let denote the set of all real numbers. The set of all
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ordered -tuples from has a special notation:

There are two commonly used ways to denote the -tuples in

: As rows or columns ;

the notation we use depends on the context. In any event they are
called vectors or –vectors and will be denoted using bold type
such as x or v. For example, an matrix will be written as
a row of columns:

If and are two -vectors in , it is clear that their matrix
sum is also in as is the scalar multiple for any
real number . We express this observation by saying that is
closed under addition and scalar multiplication. In particular, all
the basic properties in Theorem 2.1.1 are true of these -vectors.
These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the zero
matrix is called the zero –vector in and, if is an -vector,
the -vector is called the negative .

Of course, we have already encountered these -vectors in
Section 1.3 as the solutions to systems of linear equations with
variables. In particular we defined the notion of a linear combination
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of vectors and showed that a linear combination of solutions to
a homogeneous system is again a solution. Clearly, a linear
combination of -vectors in is again in , a fact that we will
be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations
depend only on the coefficient matrix and the column of
variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the
equations as the “product” of the matrix and the vector .
This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our
attention throughout this book.

To motivate the definition of the “product” , consider first the
following system of two equations in three variables:

(2.2)

and let , ,

denote the coefficient matrix, the variable matrix, and the constant
matrix, respectively. The system (2.2) can be expressed as a single
vector equation

which in turn can be written as follows:
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Now observe that the vectors appearing on the left side are just
the columns

of the coefficient matrix . Hence the system (2.2) takes the form
(2.3)
This shows that the system (2.2) has a solution if and only if the

constant matrix is a linear combination of the columns of , and
that in this case the entries of the solution are the coefficients ,

, and in this linear combination.
Moreover, this holds in general. If is any matrix, it

is often convenient to view as a row of columns. That is, if
are the columns of , we write

and say that is given in terms

of its columns.
Now consider any system of linear equations with

coefficient matrix . If is the constant matrix of the system, and

if

is the matrix of variables then, exactly as above, the system can be
written as a single vector equation

(2.4)

Example 2.2.1

Write the system
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in the form given in (2.4).

Solution:

As mentioned above, we view the left side of (2.4) as the product of
the matrix and the vector . This basic idea is formalized in the
following definition:

Definition 2.5 Matrix-Vector Multiplication

Let be an
matrix, written in terms of its columns . If
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is any n-vector, the product is defined to be the
-vector given by:

In other words, if is and is an -vector, the product
is the linear combination of the columns of where the

coefficients are the entries of (in order).
Note that if is an matrix, the product is only

defined if is an -vector and then the vector is an -vector
because this is true of each column of . But in this case the
system of linear equations with coefficient matrix and constant
vector takes the form of asingle matrix equation

The following theorem combines Definition 2.5 and equation (2.4)
and summarizes the above discussion. Recall that a system of linear
equations is said to be consistent if it has at least one solution.

Theorem 2.2.1

1. Every system of linear equations has the form
where is the coefficient matrix, is the

constant matrix, and is the matrix of variables.
2. The system is consistent if and only if

is a linear combination of the columns of .
3. If are the columns of and if
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, then is a solution to the linear

system if and only if are
a solution of the vector equation

A system of linear equations in the form as in (1) of
Theorem 2.2.1 is said to be written in matrix form. This is a useful
way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system
into the problem of expressing the constant matrix

as a linear combination of the columns of the coefficient matrix
. Such a change in perspective is very useful because one approach
or the other may be better in a particular situation; the importance
of the theorem is that there is a choice.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-41

Example 2.2.2
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If and

, compute .

Solution:
By Definition 2.5:

.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-40

Example 2.2.3

Given columns , , , and in , write
in the form where is a

matrix and is a vector.
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Solution:
Here the column of coefficients is

Hence Definition 2.5 gives

where is the matrix with ,
, , and as its columns.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-142

Example 2.2.4

Let be the
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matrix given in terms of its columns

, , , and

.

In each case below, either express as a linear
combination of , , , and , or show that it is not
such a linear combination. Explain what your answer means
for the corresponding system of linear
equations.

1.

2.

Solution:
By Theorem 2.2.1, is a linear combination of , , , and

if and only if the system is consistent (that is, it has
a solution). So in each case we carry the augmented matrix of
the system to reduced form.

1. Here

, so
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the system has no solution in this case. Hence is
\textit{not} a linear combination of , , , and .

2. Now

, so

the system is consistent.

Thus is a linear combination of , , , and in this
case. In fact the general solution is ,

, , and where and are
arbitrary parameters. Hence

for any choice of and . If we take and , this
becomes , whereas taking gives

.

Example 2.2.5

Taking to be the zero matrix, we have for all
vectors by Definition 2.5 because every column of the
zero matrix is zero. Similarly, for all matrices
because every entry of the zero vector is zero.
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Example 2.2.6

If , show that for any

vector in .

Solution:

If then Definition 2.5 gives

The matrix in Example 2.2.6 is called the identity
matrix, and we will encounter such matrices again in future. Before
proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2
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Let and be matrices, and let and be
-vectors in . Then:

1. .
2. for all scalars .
3. .

Proof:
We prove (3); the other verifications are similar and are left as

exercises. Let and

be given in terms of their
columns. Since adding two matrices is the same as adding their
columns, we have

If we write

Definition 2.5 gives

Theorem 2.2.2 allows matrix-vector computations to be carried
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out much as in ordinary arithmetic. For example, for any
matrices and and any -vectors and , we have:

We will use such manipulations throughout the book, often
without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a
system

of linear equations. There is a related system

called the associated homogeneous system, obtained from the
original system by replacing all the constants by zeros.
Suppose is a solution to and is a solution to

(that is and ). Then is
another solution to . Indeed, Theorem 2.2.2 gives

This observation has a useful converse.

Theorem 2.2.3

Suppose is any particular solution to the system
of linear equations. Then every solution to
has the form
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for some solution of the associated homogeneous
system .

Proof:
Suppose is also a solution to , so that
. Write . Then and, using
Theorem 2.2.2, we compute

Hence is a solution to the associated homogeneous system
.

Note that gaussian elimination provides one such representation.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-145

Example 2.2.7

Express every solution to the following system as the
sum of a specific solution plus a solution to the associated
homogeneous system.
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Solution:
Gaussian elimination gives ,

, , and where and are
arbitrary parameters. Hence the general solution can be written

Thus

is a particular solution (where ), and

gives all solutions to the

associated homogeneous system. (To see why this is so, carry out
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the gaussian elimination again but with all the constants set equal
to zero.)

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-47

The following useful result is included with no proof.

Theorem 2.2.4

Let be a system of equations with augmented
matrix . Write .

1. is either or .
2. The system is consistent if and only if

.
3. The system is inconsistent if and only if

.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-
vector product because it requires that the columns of be
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explicitly identified. There is another way to find such a product
which uses the matrix as a whole with no reference to its
columns, and hence is useful in practice. The method depends on
the following notion.

Definition 2.6 Dot Product in

If and are two
ordered -tuples, their is defined to be
the number

obtained by multiplying corresponding entries and
adding the results.

To see how this relates to matrix products, let denote a
matrix and let be a -vector. Writing

in the notation of Section 2.1, we compute
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From this we see that each entry of is the dot product of the
corresponding row of with . This computation goes through in
general, and we record the result in Theorem 2.2.5.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-42

Theorem 2.2.5 Dot Product Rule

Matrix Algebra | 81



Let be an matrix and let be an -vector.
Then each entry of the vector is the dot product of the
corresponding row of with .

This result is used extensively throughout linear algebra.
If is and is an -vector, the computation of by

the dot product rule is simpler than using Definition 2.5 because the
computation can be carried out directly with no explicit reference
to the columns of (as in Definition 2.5. The first entry of is
the dot product of row 1 of with . In hand calculations this is
computed by going across row one of , going down the column

, multiplying corresponding entries, and adding the results. The
other entries of are computed in the same way using the other
rows of with the column .

In general, compute entry
of as follows (see the
diagram):

Go across row of and
down column , multiply
corresponding entries, and add
the results.

As an illustration, we rework Example 2.2.2 using the dot product
rule instead of Definition 2.5.

Example 2.2.8
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If

and , compute .

Solution:
The entries of are the dot products of the rows of with :

Of course, this agrees with the outcome in Example 2.2.2.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-46
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Example 2.2.9

Write the following system of linear equations in the
form .

Solution:

Write ,

, and . Then the dot product rule

gives , so the

entries of are the left sides of the equations in the linear
system. Hence the system becomes because matrices are
equal if and only corresponding entries are equal.

An interactive H5P element has been excluded from this
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version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-45

Example 2.2.10

If is the zero matrix, then for each
-vector .

Solution:
For each , entry of is the dot product of row of with
, and this is zero because row of consists of zeros.

Definition 2.7 The Identity Matrix

For each , the is the
matrix with 1s on the main diagonal (upper left to

lower right), and zeros elsewhere.

The first few identity matrices are
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In Example 2.2.6 we showed that for each -vector
using Definition 2.5. The following result shows that this holds in
general, and is the reason for the name.

Example 2.2.11

For each we have for each -vector
in .

Solution:

We verify the case . Given the -vector

the dot product rule gives
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In general, because entry of is the dot product
of row of with , and row of has in position and zeros
elsewhere.

Example 2.2.12

Let be any
matrix with columns . If denotes
column of the identity matrix , then

for each .

Solution:

Write

where , but for all . Then Theorem 2.2.5 gives

Example 2.2.12will be referred to later; for now we use it to prove:
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Theorem 2.2.6

Let and be matrices. If for all
in , then .

Proof:
Write and

and in terms of their columns.
It is enough to show that holds for all . But we are
assuming that , which gives by Example
2.2.12.

We have introduced matrix-vector multiplication as a new way
to think about systems of linear equations. But it has several other
uses as well. It turns out that many geometric operations can be
described using matrix multiplication, and we now investigate how
this happens. As a bonus, this description provides a geometric
“picture” of a matrix by revealing the effect on a vector when it is
multiplied by . This “geometric view” of matrices is a fundamental
tool in understanding them.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If is an
matrix, the product was defined for any -column

in as follows: If where the
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are the columns of , and if ,

Definition 2.5 reads
(2.5)
This was motivated as a way of describing systems of linear

equations with coefficient matrix . Indeed every such system has
the form where is the column of constants.

In this section we extend this matrix-vector multiplication to a
way of multiplying matrices in general, and then investigate matrix
algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic
is different in a number of ways.

Definition 2.9 Matrix Multiplication

Let be an matrix, let be an matrix,
and write where is
column of for each . The product matrix is the

matrix defined as follows:

Thus the product matrix is given in terms of its columns
: Column of is the matrix-vector

product of and the corresponding column of . Note
that each such product makes sense by Definition 2.5 because

is and each is in (since has rows). Note also
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that if is a column matrix, this definition reduces to Definition 2.5
for matrix-vector multiplication.

Given matrices and , Definition 2.9 and the above
computation give

for all in . We record this for reference.

Theorem 2.3.1

Let be an matrix and let be an
matrix. Then the product matrix is and
satisfies

Here is an example of how to compute the product of two
matrices using Definition 2.9.

Example 2.3.1

Compute if

and
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.

Solution:
The columns of are

and , so Definition 2.5 gives

Hence Definition 2.9 above gives

.

While Definition 2.9 is important, there is another way to
compute the matrix product that gives a way to calculate each
individual entry. In Section 2.2 we defined the dot product of two

-tuples to be the sum of the products of corresponding entries.
We went on to show (Theorem 2.2.5) that if is an matrix
and is an -vector, then entry of the product is the dot
product of row of with . This observation was called the
“dot product rule” for matrix-vector multiplication, and the next
theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2 Dot Product Rule

Let and be matrices of sizes and ,
respectively. Then the -entry of is the dot
product of row of with column of .

Proof:

Write in terms of its columns.

Then is column of for each . Hence the -entry

of is entry of , which is the dot product of row of
with . This proves the theorem.

Thus to compute the -entry of , proceed as follows (see
the diagram):

Go across row of , and down column of , multiply
corresponding entries, and add the results.

Note that this requires that the rows of must be the same
length as the columns of . The following rule is useful for
remembering this and for deciding the size of the product matrix

.
Compatibility Rule
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Let and denote matrices. If is and is
, the product can be formed if and only if . In this case
the size of the product matrix is , and we say that
is defined, or that and are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this.
We adopt the following convention:

Whenever a product of matrices is written, it is tacitly assumed
that the sizes of the factors are such that the product is defined.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-49

To illustrate the dot product rule, we recompute the matrix product
in Example 2.3.1.

Example 2.3.3
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Compute if

and .

Solution:
Here is and is , so the product matrix is

defined and will be of size . Theorem 2.3.2 gives each entry
of as the dot product of the corresponding row of with the
corresponding column of that is,

Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the – and -entries of where
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Then compute .

Solution:
The -entry of is the dot product of row 1 of and

column 3 of (highlighted in the following display), computed by
multiplying corresponding entries and adding the results.

Similarly, the -entry of involves row 2 of and
column 4 of .

Since is and is , the product is .

An interactive H5P element has been excluded
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from this version of the text. You can view it

online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-37

Example 2.3.5

If and , compute

, , , and when they are defined.

Solution:
Here, is a matrix and is a matrix, so and

are not defined. However, the compatibility rule reads

so both and can be formed and these are and
matrices, respectively.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-50

Unlike numerical multiplication, matrix products and
need not be equal. In fact they need not even be the same size,
as Example 2.3.5 shows. It turns out to be rare that
(although it is by no means impossible), and and are said to
commute when this happens.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-48
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Example 2.3.6

Let and .

Compute , , .

Solution:

, so

can occur even if . Next,

Hence , even though and are the same
size.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-27
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Example 2.3.7

If is any matrix, then and , and
where denotes an identity matrix of a size so that the
multiplications are defined.

Solution:
These both follow from the dot product rule as the reader should

verify. For a more formal proof, write
where is column of . Then

Definition 2.9 and Example 2.2.1 give

If denotes column of , then for each by
Example 2.2.12. Hence Definition 2.9 gives:

The following theorem collects several results about matrix
multiplication that are used everywhere in linear algebra.

Theorem 2.3.3

Assume that is any scalar, and that , , and are
matrices of sizes such that the indicated matrix products
are defined. Then:
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1. and where denotes an identity
matrix.

2. .

3. .

4. .

5. .

6. .

Proof:
Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave

(3) and (5) as exercises.
1. If in terms of its columns, then

by Definition 2.9, so

4. We know (Theorem 2.2.) that
holds for every column . If we write

in terms of its columns, we get
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6. As in Section 2.1, write and , so that
and where and

for all and . If denotes the -entry of , then

is the dot product of row of with column of . Hence

But this is the dot product of row of with column of ;
that is, the -entry of ; that is, the -entry of
. This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix
multiplication. It asserts that the equation
holds for all matrices (if the products are defined). Hence this
product is the same no matter how it is formed, and so is written
simply as . This extends: The product of four
matrices can be formed several ways—for example,
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, , and —but the associative law implies
that they are all equal and so are written as . A similar
remark applies in general: Matrix products can be written
unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be
taken: The fact that and need not be equal means that
the order of the factors is important in a product of matrices. For
example and may not be equal.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-24

Warning:
If the order of the factors in a product of matrices is changed, the
product matrix may change (or may not be defined). Ignoring this
warning is a source of many errors by students of linear algebra!}

Properties 3 and 4 in Theorem 2.3.3 are called distributive laws.
They assert that and

hold whenever the sums and
products are defined. These rules extend to more than two terms
and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

Note again that the warning is in effect: For example
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need not equal . These rules make
possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression

.

Solution:

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-25

Example 2.3.9 and Example 2.3.10 below show how we can use
the properties in Theorem 2.3.2to deduce other facts about matrix
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multiplication. Matrices and are said to commute if
.

Example 2.3.9

Suppose that , , and are matrices and that
both and commute with ; that is, and

. Show that commutes with .

Solution:
Showing that commutes with means verifying that

. The computation uses the associative law
several times, as well as the given facts that and

.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-146

Example 2.3.10
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Show that if and only if
.

Solution:
The following always holds:

(2.6)

Hence if , then
follows. Conversely, if this

last equation holds, then equation (2.6 becomes

This gives , and follows.
In Section 2.2 we saw (in Theorem 2.2.1 ) that every system of

linear equations has the form

where is the coefficient matrix, is the column of variables,
and is the constant matrix. Thus the system of linear equations
becomes a single matrix equation. Matrix multiplication can yield
information about such a system.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-26

Example 2.3.11
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Consider a system of linear equations where
is an matrix. Assume that a matrix exists

such that . If the system has a

solution, show that this solution must be . Give a

condition guaranteeing that is in fact a solution.

Solution:

Suppose that is any solution to the system, so that
. Multiply both sides of this matrix equation by to obtain,
successively,

This shows that if the system has a solution , then that solution

must be , as required. But it does not guarantee that the

system has a solution. However, if we write , then

Thus will be a solution if the condition is
satisfied.

The ideas in Example 2.3.11 lead to important information about
matrices; this will be pursued in the next section.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-38
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2.4 Matrix Inverse

Three basic operations on matrices, addition, multiplication, and
subtraction, are analogs for matrices of the same operations for
numbers. In this section we introduce the matrix analog of
numerical division.

To begin, consider how a numerical equation is solved
when and are known numbers. If , there is no solution
(unless ). But if , we can multiply both sides by the
inverse to obtain the solution . Of course
multiplying by is just dividing by , and the property of
that makes this work is that . Moreover, we saw in
Section~?? that the role that plays in arithmetic is played in matrix
algebra by the identity matrix . This suggests the following
definition.

Definition 2.11 Matrix Inverses

If is a square matrix, a matrix is called an inverse of
if and only if

A matrix that has an inverse is called an

Note that only square matrices have inverses. Even though it is
plausible that nonsquare matrices and could exist such that

and , where is and is
, we claim that this forces . Indeed, if

there exists a nonzero column such that (by Theorem
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1.3.1), so , a
contradiction. Hence . Similarly, the condition
implies that . Hence so is square.}

Example 2.4.1

Show that

is an inverse of .

Solution:
Compute and .

Hence , so is indeed an inverse of .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-147

108 | Matrix Algebra



Example 2.4.2

Show that

has no inverse.

Solution:

Let

denote an arbitrary matrix. Then

so has a row of zeros. Hence cannot equal for any
.

The argument in Example 2.4.2 shows that no zero matrix has an
inverse. But Example 2.4.2 also shows that, unlike arithmetic, it is
possible for a nonzero matrix to have no inverse. However, if a matrix
does have an inverse, it has only one.

Theorem 2.4.1

If and are both inverses of , then .
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Proof:
Since and are both inverses of , we have

. Hence

If is an invertible matrix, the (unique) inverse of is denoted
. Hence (when it exists) is a square matrix of the same

size as with the property that

These equations characterize in the following sense:
Inverse Criterion: If somehow a matrix can be found such that

and , then is invertible and is the inverse
of ; in symbols, .}

This is a way to verify that the inverse of a matrix exists. Example
2.3.3 and Example 2.3.4 offer illustrations.

Example 2.4.3

If , show that and so find

.

Solution:

We have

, and so
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Hence , as asserted. This can be written as
, so it shows that is the inverse of . That

is, .

The next example presents a useful formula for the inverse of

a matrix when it exists. To state it, we

define the and the
of the matrix as follows:

Example 2.4.4

If , show that has an inverse if and

only if , and in this case

Solution:
For convenience, write and

. Then as

the reader can verify. So if , scalar multiplication by gives
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Hence is invertible and . Thus it remains only to
show that if exists, then .

We prove this by showing that assuming leads to a
contradiction. In fact, if , then , so left
multiplication by gives ; that is,

, so . But this implies that , , , and are
all zero, so , contrary to the assumption that exists.

As an illustration, if

then . Hence is

invertible and , as the

reader is invited to verify.
The determinant and adjugate will be defined in Chapter 3 for any

square matrix, and the conclusions in Example 2.4.4 will be proved
in full generality.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-51

Inverse and Linear systems

Matrix inverses can be used to solve certain systems of linear
equations. Recall that a of linear equations can be written
as a matrix equation
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where and are known and is to be determined. If is
invertible, we multiply each side of the equation on the left by
to get

This gives the solution to the system of equations (the reader

should verify that really does satisfy ).
Furthermore, the argument shows that if is solution, then

necessarily , so the solution is unique. Of course the
technique works only when the coefficient matrix has an inverse.
This proves Theorem 2.4.2.

Theorem 2.4.2

Suppose a system of equations in variables is
written in matrix form as

If the coefficient matrix is invertible, the
system has the unique solution
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Example 2.4.5

Use Example 2.4.4 to solve the system

.

Solution:

In matrix form this is where ,

, and . Then

, so is invertible and

by Example 2.4.4. Thus Theorem 2.4.2 gives

so the solution is and .
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An interactive H5P element has been
excluded from this version of the text.
You can view it online here:

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#h5p-19

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-20

An inversion method

If a matrix is and invertible, it is desirable to have an
efficient technique for finding the inverse. The following procedure
will be justified in Section 2.5.

Matrix Inversion Algorithm

If is an invertible (square) matrix, there exists a
sequence of elementary row operations that carry to the
identity matrix of the same size, written . This
same series of row operations carries to ; that is,

. The algorithm can be summarized as follows:
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where the row operations on and are carried out
simultaneously.

Example 2.4.6

Use the inversion algorithm to find the inverse of the
matrix

Solution:
Apply elementary row operations to the double matrix

so as to carry to . First interchange rows 1 and 2.
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Next subtract times row 1 from row 2, and subtract row 1 from
row 3.

Continue to reduced row-echelon form.

Hence , as is readily verified.

Given any matrix , Theorem 1.2.1 shows that can be
carried by elementary row operations to a matrix in reduced
row-echelon form. If , the matrix is invertible (this will
be proved in the next section), so the algorithm produces . If

, then has a row of zeros (it is square), so no system of
linear equations can have a unique solution. But then is
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not invertible by Theorem 2.4.2. Hence, the algorithm is effective in
the sense conveyed in Theorem 2.4.3.

Theorem 2.4.3

If is an matrix, either can be reduced to
by elementary row operations or it cannot. In the
first case, the algorithm produces ; in the second case,

does not exist.

An interactive H5P element has been
excluded from this version of the text.
You can view it online here:

https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66#h5p-21

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-53
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Properties of inverses

The following properties of an invertible matrix are used
everywhere.

Example 2.4.7: Cancellation Laws

Let be an invertible matrix. Show that:

1. If , then .

2. If , then .

Solution:
Given the equation , left multiply both sides by

to obtain . Thus , that is
. This proves (1) and the proof of (2) is left to the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that
an invertible matrix can be “left cancelled” and “right cancelled”,
respectively. Note however that “mixed” cancellation does not hold
in general: If is invertible and , then and may

be equal, even if both are . Here is a specific example:

Sometimes the inverse of a matrix is given by a formula. Example
2.4.4 is one illustration; Example 2.4.8 and Example 2.4.9 provide two
more. The idea is the : If a matrix can
be found such that , then is invertible and

.
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Example 2.4.8

If is an invertible matrix, show that the transpose
is also invertible. Show further that the inverse of is
just the transpose of ; in symbols,

.

Solution:
exists (by assumption). Its transpose is the

candidate proposed for the inverse of . Using the inverse
criterion, we test it as follows:

Hence is indeed the inverse of ; that is,
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-22
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Example 2.4.9

If and are invertible matrices, show that
their product is also invertible and

.

Solution:
We are given a candidate for the inverse of , namely

. We test it as follows:

Hence is the inverse of ; in symbols,
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-52

We now collect several basic properties of matrix inverses for
reference.
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Theorem 2.4.4

All the following matrices are square matrices of the
same size.

1. is invertible and .

2. If is invertible, so is , and .

3. If and are invertible, so is , and
.

4. If are all invertible, so is their
product , and

5. If is invertible, so is for any , and
.

6. If is invertible and is a number, then is
invertible and .

7. If is invertible, so is its transpose , and
.

Proof:
1. This is an immediate consequence of the fact that .

2. The equations show that is the
inverse of ; in symbols, .

3. This is Example 2.4.9.
4. Use induction on . If , there is nothing to prove, and if

, the result is property 3. If , assume inductively that
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. We apply this
fact together with property 3 as follows:

So the proof by induction is complete.
5. This is property 4 with .
6. The readers are invited to verify it.
7. This is Example 2.4.8.
The reversal of the order of the inverses in properties 3 and

4 of Theorem 2.4.4 is a consequence of the fact that matrix
multiplication is not
commutative. Another manifestation of this comes when matrix
equations are dealt with. If a matrix equation is given,
it can be by a matrix to yield .
Similarly, gives . However,
we cannot mix the two: If , it need be the case that

even if is invertible, for example,

, .

Part 7 of Theorem 2.4.4 together with the fact that
gives

Corollary 2.4.1
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A square matrix is invertible if and only if is
invertible.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-23

Example 2.4.10

Find if .

Solution:
By Theorem 2.4.2 (2) and Example 2.4.4, we have

Hence , so
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by Theorem 2.4.4(7).

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-55

The following important theorem collects a number of conditions all
equivalent to invertibility. It will be referred to frequently below.

Theorem 2.4.5 Inverse Theorem

The following conditions are equivalent for an
matrix :

1. is invertible.

2. The homogeneous system has only the

trivial solution .

3. can be carried to the identity matrix by
elementary row operations.

4. The system has at least one solution for
every choice of column .

5. There exists an matrix such that
.

Matrix Algebra | 125



Proof:
We show that each of these conditions implies the next, and that

(5) implies (1).

(1) (2). If exists, then gives
.

(2) (3). Assume that (2) is true. Certainly by row
operations where is a reduced, row-echelon matrix. It suffices
to show that . Suppose that this is not the case. Then
has a row of zeros (being square). Now consider the augmented

matrix of the system . Then

is the reduced form, and
also has a row of zeros. Since is square there must be at least one
nonleading variable, and hence at least one parameter. Hence the

system has infinitely many solutions, contrary to (2). So
after all.

(3) (4). Consider the augmented matrix of the

system . Using (3), let by a sequence of row
operations. Then these same operations carry

for some column . Hence the system

has a solution (in fact unique) by gaussian elimination.
This proves (4).

(4) (5). Write where
are the columns of . For each \newline
, the system has a solution by

(4), so . Now let be the
matrix with these matrices as its columns. Then

Definition 2.9 gives (5):
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(5) (1). Assume that (5) is true so that for some
matrix . Then implies (because

). Thus condition (2) holds for
the matrix rather than . Hence the argument above that (2)
(3) (4) (5) (with replaced by ) shows that a matrix
exists such that . But then

Thus which, together with ,
shows that is the inverse of . This proves (1).

The proof of (5) (1) in Theorem 2.4.5 shows that if
for square matrices, then necessarily , and hence that
and are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If and are square matrices such that ,
then also . In particular, both and are
invertible, , and .

Here is a quick way to remember Corollary 2.4.1. If is a square
matrix, then

1. If then .
2. If then .

Observe that Corollary 2.4.1 is false if and are not square
matrices. For example, we have
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In fact, it can be verified that if and ,
where is and is , then and and

are (square) inverses of each other.

An matrix has if and only if (3) of Theorem
2.4.5 holds. Hence

Corollary 2.4.2

An matrix is invertible if and only if
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-54
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66#h5p-148
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3. Determinants and
Diagonalization

Introduction

With each square matrix we can calculate a number, called the
determinant of the matrix, which tells us whether or not the matrix
is invertible. In fact, determinants can be used to give a formula
for the inverse of a matrix. They also arise in calculating certain
numbers (called eigenvalues) associated with the matrix. These
eigenvalues are essential to a technique called diagonalization that
is used in many applications where it is desired to predict the future
behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term
“determinant” was first used in 1801 by Gauss is his Disquisitiones
Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in
the eighteenth and nineteenth centuries, primarily because of their
significance in geometry. Although they are somewhat less
important today, determinants still play a role in the theory and
application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4, we defined the determinant of a matrix
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as follows:

and showed (in Example 2.4.4) that has an inverse if and only
if det . One objective of this chapter is to do this for any
square matrix A. There is no difficulty for matrices: If

, we define and note that is
invertible if and only if .

If is and invertible, we look for a suitable definition
of by trying to carry to the identity matrix by row
operations. The first column is not zero ( is invertible); suppose
the (1, 1)-entry is not zero. Then row operations give

where and . Since is
invertible, one of and is nonzero (by Example 2.4.11); suppose
that . Then the reduction proceeds

where
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. We define
(3.1)
and observe that because (is

invertible).

To motivate the definition below, collect the terms in Equation 3.1
involving the entries , , and in row 1 of :

This last expression can be described as follows: To compute the
determinant of a matrix , multiply each entry in row 1
by a sign times the determinant of the matrix obtained by
deleting the row and column of that entry, and add the results. The
signs alternate down row 1, starting with . It is this observation
that we generalize below.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-28

Example 3.1.1

This suggests an inductive method of defining the determinant of
any square matrix in terms of determinants
of matrices one size smaller. The idea is to define determinants of

matrices in terms of determinants of matrices,
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then we do matrices in terms of matrices, and so
on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a matrix

Assume that determinants of
matrices have been defined. Given the matrix ,
let

denote the matrix obtained
from A by deleting row and column

Then the –cofactor is the scalar defined by

Here is called the sign of the -position.

The sign of a position is clearly or , and the following
diagram is useful for remembering it:

Note that the signs alternate along each row and column with
in the upper left corner.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-150

Example 3.1.2

Find the cofactors of positions , and
in the following matrix.

Solution:

Here is the matrix

that remains when row and column are deleted. The sign of
position is (this is also the -entry
in the sign diagram), so the -cofactor is
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Turning to position , we find

Finally, the -cofactor is

Clearly other cofactors can be found—there are nine in all, one for
each position in the matrix.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-57

We can now define for any square matrix

Definition 3.2 Cofactor expansion of a Matrix
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Assume that determinants of
matrices have been defined. If is define

This is called the cofactor expansion of along row
.

It asserts that can be computed by multiplying the entries
of row by the corresponding
cofactors, and adding the results. The astonishing thing is that

can be computed by taking the cofactor expansion along
: Simply multiply each entry of that row

or column by the corresponding cofactor and add.

Theorem 3.1.1 Cofactor Expansion Theorem

The determinant of an matrix can be
computed by using the cofactor expansion along any row or
column
of . That is can be computed by multiplying each
entry of the row or column by the corresponding cofactor
and adding the results.

Example 3.1.3
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Compute the determinant of

.

Solution:
The cofactor expansion along the first row is as follows:

Note that the signs alternate along the row (indeed along
row or column). Now we compute by expanding along the
first column.

The reader is invited to verify that can be computed by
expanding along any other row or column.

The fact that the cofactor expansion along
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of a matrix always gives the same
result (the determinant of ) is remarkable, to say the least. The
choice of a particular row or column can simplify the calculation.

Example 3.1.4

Compute where

.

Solution:
The first choice we must make is which row or column to use in

the
cofactor expansion. The expansion involves multiplying entries by
cofactors, so the work is minimized when the row or column
contains as
many zero entries as possible. Row is a best choice in this matrix
(column would do as well), and the expansion is

Determinants and Diagonalization | 139



This is the first stage of the calculation, and we have succeeded in
expressing the determinant of the matrix
in terms of the determinant of a matrix. The next stage
involves
this matrix. Again, we can use any row or column for the
cofactor
expansion. The third column is preferred (with two zeros), so

This completes the calculation.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-151

This example shows us that calculating a determinant is simplified
a great deal when a row or column consists mostly of zeros. (In fact,
when a row or column consists of zeros, the determinant
is zero—simply expand along that row or column.) We did learn that
one method of zeros in a matrix is to apply elementary
row operations to it. Hence, a natural question to ask is what effect
such a row operation has on the determinant of the matrix. It turns
out that the effect is easy to determine and that elementary

operations can be used in the same way. These
observations lead to a technique for evaluating determinants that
greatly reduces the labour involved. The necessary information is
given in Theorem 3.1.2.

Theorem 3.1.2

Let denote an matrix.

1. If A has a row or column of zeros, .
2. If two distinct rows (or columns) of are

interchanged, the determinant of the resulting matrix
is .
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3. If a row (or column) of is multiplied by a constant
, the determinant of the resulting matrix is

.
4. If two distinct rows (or columns) of are identical,

.
5. If a multiple of one row of is added to a different

row (or if a multiple of a column is added to a
different column), the determinant of
the resulting matrix is .

The following four examples illustrate how Theorem 3.1.2 is used to
evaluate determinants.

Example 3.1.5

Evaluate when

.

Solution:
The matrix does have zero entries, so expansion along (say) the

second row would involve somewhat less work. However, a column
operation can be
used to get a zero in position )—namely, add column 1 to
column 3. Because this does not change the value of the
determinant, we obtain
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where we expanded the second matrix along row 2.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-58

Example 3.1.6

If ,

evaluate where

.

Solution:
First take common factors out of rows 2 and 3.
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Now subtract the second row from the first and interchange the
last two rows.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-59

The determinant of a matrix is a sum of products of its entries.
In particular, if these entries are polynomials in , then the
determinant itself is a polynomial in . It is often of interest to
determine which values of make the determinant zero, so it is
very useful if the determinant is given in factored form. Theorem
3.1.2 can help.

Example 3.1.7
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Find the values of for which , where

.

Solution:
To evaluate , first subtract times row 1 from rows 2 and

3.

At this stage we could simply evaluate the determinant (the result
is ). But then we would have to factor this
polynomial to find the values of that make it zero. However, this
factorization can be obtained directly by first factoring each entry
in the determinant and taking a common
factor of from each row.

Hence, means , that is
or .
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-56

Example 3.1.8

If , , and are given show that

Solution:
Begin by subtracting row 1 from rows 2 and 3, and then expand

along column 1:
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Now and are common factors in rows 1
and 2, respectively, so

The matrix in Example 3.1.8 is called a Vandermonde matrix, and
the formula for its determinant can be generalized to the
case.

If is an matrix, forming means multiplying
row of by . Applying property 3 of Theorem 3.1.2, we can take
the common factor out of each row and so obtain the following
useful result.

Theoerem 3.1.3

If A is an matrix, then
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for any number .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-149

The next example displays a type of matrix whose determinant is
easy to compute.

Example 3.1.9

Evaluate if

.

Solution:

Expand along row 1 to get . Now

expand this along the top row to get
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, the product of the main

diagonal entries.
A square matrix is called a

if all entries above the main diagonal are zero (as in Example 3.1.9).
Similarly, an is one for which
all entries below the main diagonal are zero. A

is one that is either upper or lower
triangular. Theorem 3.1.4 gives an easy rule for calculating the
determinant of any triangular matrix.

Theorem 3.1.4

If A is a square triangular matrix, then det A is the
product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a
routine matter to carry a matrix to triangular form using row
operations.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-60

Determinants and Diagonalization | 149



3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived.
One consequence of these theorems is that a square matrix is
invertible if and only if . Moreover, determinants are
used to give a formula for which, in turn, yields a formula
(called Cramer’s rule) for the
solution of any system of linear equations with an invertible
coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812)
about the determinant of a product of matrices.

Theorem 3.2.1 Product Theorem

If and are matrices, then
.

The complexity of matrix multiplication makes the product theorem
quite unexpected. Here is an example where it reveals an important
numerical identity.

Example 3.2.1
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If and

then .

Hence gives the identity

Theorem 3.2.1 extends easily to
. In fact, induction gives

for any square matrices of the same size. In
particular, if each , we obtain

We can now give the invertibility condition.

Theorem 3.2.2

An matrix is invertible if and only if
. When this is the case,

Proof:
If is invertible, then ; so the product theorem gives
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Hence, and also .
Conversely, if , we show that can be carried to

by elementary row operations (and invoke Theorem 2.4.5). Certainly,
can be carried to its reduced row-echelon form , so

where the are elementary matrices
(Theorem 2.5.1). Hence the product theorem gives

Since for all elementary matrices , this shows
. In particular, has no row of zeros, so

because is square and reduced row-echelon. This is what we
wanted.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-61

Example 3.2.2

For which values of does

have an inverse?

Solution:
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Compute by first adding times column 1 to column 3 and
then expanding along row 1.

Hence, if or , and has an inverse
if and .

Example 3.2.3

If a product of square matrices is
invertible, show that each is invertible.

Solution:
We have

by the product theorem, and by
Theorem 3.2.2 because is invertible. Hence

so for each . This shows that each is invertible,
again by Theorem 3.2.2.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-63

Theorem 3.2.3

If is any square matrix, .

Proof:
Consider first the case of an elementary matrix . If is of type

I or II, then ; so certainly . If is of
type III, then is also of type III; so
by Theorem 3.1.2. Hence, for every elementary
matrix .

Now let be any square matrix. If is not invertible, then
neither is ; so by Theorem 3.1.2. On
the other hand, if is invertible, then ,
where the are elementary matrices (Theorem 2.5.2). Hence,

so the product theorem gives

This completes the proof.
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Example 3.2.4

If and , calculate
.

Solution:
We use several of the facts just derived.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-62
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Example 3.2.5

A square matrix is called if
. What are the possible values of if

is orthogonal?

Solution:
If is orthogonal, we have . Take determinants to

obtain

Since is a number, this means .

Adjugates

In Section 2.4 we defined the adjugate of a 2 2 matrix

to be .

Then we verified that
and hence that, if , . We are now
able to define the adjugate of an arbitrary square matrix and to show
that this formula for the inverse remains valid (when the
inverse exists).

Recall that the -cofactor of a square matrix is
a number defined for each position in the matrix. If is a
square matrix, the is defined to be
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the matrix whose -entry is the -cofactor of
.

Definition 3.3 Adjugate of a Matrix

The of , denoted , is the
transpose of this cofactor matrix; in symbols,

Example 3.2.6

Compute the adjugate of

and calculate and .

Solution:
We first find the cofactor matrix.
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Then the adjugate of is the transpose of this cofactor matrix.
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The computation of gives

and the reader can verify that also . Hence,
analogy with the case would indicate that ; this
is, in fact, the case.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-64

The relationship holds for any square
matrix .
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Theorem 3.2.4 Adjugate formula

If A is any square matrix, then

In particular, if det A 0, the inverse of A is given by

It is important to note that this theorem is an efficient way to
find the inverse of the matrix . For example, if were
, the calculation of would require computing
determinants of matrices! On the other hand, the matrix
inversion algorithm would find with about the same effort
as finding . Clearly, Theorem 3.2.4 is not a result:
its virtue is that it gives a formula for that is useful for

purposes.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-65
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Example 3.2.7

Find the -entry of if

.

Solution:
First compute

Since ,

the -entry of is the -entry of the matrix
; that is, it equals

Example 3.2.8

If is , , show that
.
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Solution:
Write ; we must show that

. We have by Theorem 3.2.4, so taking
determinants gives . Hence we are done if

. Assume ; we must show that
, that is, is not invertible. If , this follows from

; if , it follows because then
.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

is a system of equations in variables . Here
is the coefficient matrix and and are the columns

of variables and constants, respectively. If , we left

multiply by to obtain the solution . When we use
the adjugate formula, this becomes
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Hence, the variables are given by
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Now the quantity
occurring in the

formula for looks like the cofactor expansion of the determinant
of a matrix. The cofactors involved are

, corresponding to the first
column of . If is obtained from by replacing the first column
of by , then for each because column

is deleted when computing them. Hence, expanding by
the first column gives
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Hence, and similar results hold for the other
variables.

Theorem 3.2.5 Cramer’s Rule

If is an invertible matrix, the solution to the
system

of equations in the variables is given
by

where, for each , is the matrix obtained from by
replacing column by .
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Example 3.2.9

Find , given the following system of equations.

Solution:
Compute the determinants of the coefficient matrix and the

matrix obtained from it by replacing the first column by the
column of constants.

Hence, by Cramer’s rule.
Cramer’s rule is an efficient way to solve linear systems or

invert matrices. True, it enabled us to calculate here without
computing or . Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the
number of computations needed to find the variables by the
gaussian algorithm is comparable to the number required to find
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of the determinants involved in Cramer’s rule. Furthermore,
the algorithm works when the matrix of the system is not invertible
and even when the coefficient matrix is not square. Like the
adjugate formula, then, Cramer’s rule is a practical numerical
technique; its virtue is theoretical.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-66

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-152

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-153
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3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the
weather in a region, the economy of a nation, the diversity of an
ecosystem, etc. Describing such systems is difficult in general and
various methods have been developed in special cases. In this
section we describe one such method, called
which is one of the most important techniques in linear algebra. A
very fertile example of this procedure is in modelling the growth
of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin
by setting up a simple model of a bird population in which we make
assumptions about survival and reproduction rates.

Example 3.3.1

Consider the evolution of the population of a species of
birds. Because the number of males and females are nearly
equal, we count only females. We assume that each female
remains a juvenile for one year and then becomes an adult,
and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year
is twice the number of adult females alive the year
before (we say the is 2).

2. Half of the adult females in any year survive to the
next year (the is ).
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3. One-quarter of the juvenile females in any year
survive into adulthood (the

is ).

If there were 100 adult females and 40 juvenile females
alive initially, compute the population of females years
later.

Solution:
Let and denote, respectively, the number of adult and

juvenile females after years, so that the total female population is
the sum . Assumption 1 shows that , while
assumptions 2 and 3 show that . Hence the
numbers and in successive years are related by the following
equations:

If we write

and

these equations take the matrix form

Taking gives , then taking gives
, and taking gives
. Continuing in this way, we get
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Since

is known, finding the population profile amounts to computing
for all . We will complete this calculation in Example

3.3.12 after some new techniques have been developed.
Let be a fixed matrix. A sequence

of column vectors in is called a
. Many models regard as

a continuous function of the time , and replace our condition
between and with a differential relationship viewed as
functions of time if is known and the other are determined
(as in Example 3.3.1) by the conditions

These conditions are called a for the
vectors . As in Example 3.3.1, they imply that

so finding the columns amounts to calculating for
.

Direct computation of the powers of a square matrix can
be time-consuming, so we adopt an indirect method that is
commonly used. The idea is to first the matrix ,
that is, to find an invertible matrix such that

(3.8)
This works because the powers of the diagonal matrix are

easy to compute, and Equation (3.8) enables us to compute powers
of the matrix in terms of powers of . Indeed, we can

solve Equation (3.8) for to get . Squaring this
gives

Using this we can compute as follows:

Continuing in this way we obtain Theorem 3.3.1 (even if is not
diagonal).
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Theorem 3.3.1

If then for each
.

Hence computing comes down to finding an invertible matrix
as in equation Equation (3.8). To do this it is necessary to first

compute certain numbers (called eigenvalues) associated with the
matrix .

Eigenvalue and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If is an matrix, a number is called an
of if

In this case, is called an of
corresponding to the eigenvalue , or a –

for short.
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Example 3.3.2

If and then

so is an eigenvalue of with
corresponding eigenvector .

The matrix in Example 3.3.2 has another eigenvalue in addition
to . To find it, we develop a general procedure for

matrix .

By definition a number is an eigenvalue of the matrix
if and only if for some column . This is

equivalent to asking that the homogeneous system

of linear equations has a nontrivial solution . By Theorem
2.4.5 this happens if and only if the matrix is not invertible
and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If is an matrix, the
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of is
defined by

Note that is indeed a polynomial in the variable , and it
has degree when is an matrix (this is illustrated in the
examples below). The above discussion shows that a number is an
eigenvalue of if and only if , that is if and only if is
a of the characteristic polynomial . We record these
observations in

Theorem 3.3.2

Let be an matrix.

1. The eigenvalues of are the roots of the
characteristic polynomial of .

2. The -eigenvectors are the nonzero solutions to
the homogeneous system

of linear equations with as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is
a routine application of gaussian elimination, but finding the
eigenvalues can be difficult, often requiring computers. For now, the
examples and exercises will be constructed so that the roots of the
characteristic polynomials are relatively easy to find
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(usually integers). However, the reader should not be misled by this
into thinking that eigenvalues are so easily obtained for the matrices
that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix

discussed in Example 3.3.2, and then find all the eigenvalues
and their eigenvectors.

Solution:
Since

we get

Hence, the roots of are and , so
these are the eigenvalues of . Note that was the
eigenvalue mentioned in Example 3.3.2, but we have found a new
one: .

To find the eigenvectors corresponding to , observe
that in this case
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so the general solution to is

where is an arbitrary real number. Hence, the eigenvectors

corresponding to are where is

arbitrary. Similarly, gives rise to the eigenvectors

which includes the observation in Example

3.3.2.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-68

Note that a square matrix has eigenvectors associated
with any given eigenvalue . In fact nonzero solution of

is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined
by the gaussian algorithm (see Theorem 1.3.2). Observe that any
nonzero multiple of an eigenvector is again an eigenvector, and such
multiples are often more convenient. Any set of nonzero multiples

of the basic solutions of will be called a set of
basic eigenvectors corresponding to .
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GeoGebra Exercise: Eigenvalue and eigenvectors

https://www.geogebra.org/m/DJXTtm2k
Please answer these questions after you open the webpage:

1. Set the matrix to be

2. Drag the point until you see the vector and
are on the same line. Record the value of . How many
times do you see and lying on the same line when

travel through the whole circle? Why?
3. Based on your observation, what can we say about the
eigenvalue and eigenvector of ?
4. Set the matrix to be

and repeat what you did above.
5. Check your lecture notes about the eigenvalues and
eigenvectors of this matrix. Are the results consistent with
what you observe?

Example 3.3.4:
Find the characteristic polynomial, eigenvalues, and basic

eigenvectors for
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Solution:
Here the characteristic polynomial is given by

so the eigenvalues are , , and . To
find all eigenvectors for , compute

We want the (nonzero) solutions to . The
augmented matrix becomes

using row operations. Hence, the general solution to
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is

where is arbitrary, so we can use

as the basic eigenvector corresponding to . As the reader
can verify, the gaussian algorithm gives basic eigenvectors

and

corresponding to and , respectively. Note that

to eliminate fractions, we could instead use

as the basic -eigenvector.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-155

Example 3.3.5
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If is a square matrix, show that and have the
same characteristic polynomial, and hence the same
eigenvalues.

Solution:
We use the fact that . Then

by Theorem 3.2.3. Hence and have the same
roots, and so and have the same eigenvalues (by Theorem
3.3.2).

The eigenvalues of a matrix need not be distinct. For example, if

the characteristic polynomial is so the eigenvalue 1
occurs twice. Furthermore, eigenvalues are usually not computed
as the roots of the characteristic polynomial. There are iterative,
numerical methods that are much more efficient for large matrices.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-67
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-156

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70#h5p-157
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4. Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We
view a point in 3-space as an arrow from the origin to that point.
Doing so provides a “picture” of the point that is truly worth a
thousand words.

Vectors in

Introduce a coordinate system in 3-dimensional space in the usual
way. First, choose a point called the , then choose three
mutually perpendicular lines through , called the , , and

, and establish a number scale on each axis with zero at the
origin. Given a point in -space we associate three numbers ,

, and with , as described in Figure 4.1.1.
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These numbers are called the of , and we
denote the point as , or to emphasize the
label . The result is called a coordinate system for
3-space, and the resulting description of 3-space is called

.
As in the plane, we introduce vectors by identifying each point

with the vector

in , represented by the from the origin

to as in Figure 4.1.1. Informally, we say that the point has
vector , and that vector has point . In this way 3-space is
identified with , and this identification will be made throughout
this chapter, often without comment. In particular, the terms
“vector” and “point” are interchangeable. The resulting description
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of 3-space is called . Note that the origin

is .

Length and direction

We are going to discuss two fundamental geometric properties of
vectors in : length and direction. First, if is a vector with point

, the of vector is defined to be the distance from the
origin to , that is the length of the arrow representing . The
following properties of length will be used frequently.

Theorem 4.1.1

Let be a vector.

1. .

2. if and only if
3. for all scalars .

Proof:
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Let have point .

1. In Figure 4.1.2, is the hypotenuse of the right triangle
, and so by Pythagoras’ theorem.

But is the hypotenuse of the right triangle , so
. Now (1) follows by eliminating and taking

positive square roots.
2. If = 0, then by (1). Because squares

of real numbers are nonnegative, it follows that

, and hence that . The converse is

because .

3. We have so (1) gives

Hence , and we are done because
for any real number .
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Example 4.1.1

If

then . Similarly if

in 2-space then .

When we view two nonzero vectors as arrows emanating from the
origin, it is clear geometrically what we mean by saying that they
have the same or opposite . This leads to a
fundamental new description of vectors.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-161

An interactive H5P element has been excluded from this

Vector Geometry | 185



version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-164

Theorem 4.1.2

Let and be vectors in . Then
as matrices if and only if and have the same direction
and the same length.

Proof:
If , they clearly have the same direction and length.

Conversely, let and be vectors with points and
respectively. If and have the same length and

direction then, geometrically, and must be the same point.
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Hence , ,
and , that is

.

Note that a vector’s length and direction do depend on the
choice of coordinate system in . Such descriptions are important
in applications because physical laws are often stated in terms of
vectors, and these laws cannot depend on the particular coordinate
system used to describe the situation.

Geometric Vectors

If and are distinct points in space, the arrow from to has
length and direction.
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Hence,

Definition 4.1 Geometric vectors

Suppose that and are any two points in . In

Figure 4.1.4 the line segment from to is denoted
and is called the from to .
Point is called the of , is called the
and the is denoted .

Note that if is any vector in with point then is

itself a geometric vector where is the origin. Referring to as
a “vector” seems justified by Theorem 4.1.2 because it has a direction
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(from to ) and a length . However there appears to be
a problem because two geometric vectors can have the same length
and direction even if the tips and tails are different.

For example and
in Figure 4.1.5 have the same
length and the same
direction (1 unit left and 2 units
up) so, by Theorem 4.1.2, they
are the same vector! The best
way to understand this

apparent paradox is to see

and as different
of the

same underlying vector

. Once it is clarified,

this phenomenon is a great benefit because, thanks to Theorem
4.1.2, it means that the same geometric vector can be positioned
anywhere in space; what is important is the length and direction,
not the location of the tip and tail. This ability to move geometric
vectors about is very useful.

The Parallelogram Law

We now give an intrinsic
description of the sum of two
vectors and in , that is
a description that depends only
on the lengths and directions of

and and not on the choice
of coordinate system. Using
Theorem 4.1.2 we can think of

these vectors as having a common tail . If their tips are and
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respectively, then they both lie in a plane containing , ,
and , as shown in Figure 4.1.6. The vectors and create a
parallelogram in , shaded in Figure 4.1.6, called the parallelogram

by and .

If we now choose a coordinate system in the plane with as
origin, then the parallelogram law in the plane shows that their sum

is the diagonal of the parallelogram they determine with
tail . This is an intrinsic description of the sum because it
makes no reference to coordinates. This discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors and
, the vector is the diagonal with the same tail as
and .
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Because a vector can be positioned with
its tail at any point, the parallelogram law
leads to another way to view vector
addition. In Figure 4.1.7 (a) the sum
of two vectors and is shown as given
by the parallelogram law. If is moved so
its tail coincides with the tip of (shown in
(b)) then the sum is seen as “first
and then . Similarly, moving the tail of
to the tip of shows in (c) that is
“first and then .” This will be referred
to as the , and it
gives a graphic illustration of why

.

Since denotes the vector from a
point to a point , the tip-to-tail rule
takes the easily remembered form

for any points , , and .

One reason for the importance of the
tip-to-tail rule is that it means two or more
vectors can be added by placing them tip-
to-tail in sequence. This gives a useful
“picture” of the sum of several vectors, and
is illustrated for three vectors in Figure
4.1.8 where is viewed as first

, then , then .
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There is a simple geometrical way to
visualize the (matrix)
of two vectors. If and are positioned so
that they have a common tail , and if
and are their respective tips, then the tip-

to-tail rule gives . Hence

is the vector from the tip of
to the tip of . Thus both and

appear as diagonals in the
parallelogram determined by and (see

Figure 4.1.9.

Theorem 4.1.3

If and have a common tail, then is the
vector from the tip of to the tip of .

One of the most useful applications of vector subtraction is that it
gives a simple formula for the vector from one point to another, and
for the distance between the points.

Theorem 4.1.4
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Let and be two
points. Then:

1. .

2. The distance between and is

Can you prove these results?

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-162

Example 4.1.3

The distance between and
is , and the vector
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from to is

.

The next theorem tells us what happens to the length and direction
of a scalar multiple of a given vector.

Scalar Multiple Law

If a is a real number and is a vector then:

• The length of is .

• If , the direction of is the same as if
; opposite to if

Proof:
The first statement is true due to Theorem 4.1.1.
To prove the second statement, let denote the origin in

Let have point , and choose any plane containing and . If
we set up a coordinate system in this plane with as origin, then

so the result follows from the scalar multiple law in the
plane.

A vector is called a if . Then
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, , and

are unit vectors, called the vectors.

Example 4.1.4

If show that is the unique unit vector in

the same direction as

Solution:
The vectors in the same direction as are the scalar multiples
where . But when , so

is a unit vector if and only if .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-158
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Definition 4.2 Parallel vectors in

Two nonzero vectors are called if they have
the same or opposite direction.

Theorem 4.1.5

Two nonzero vectors and are parallel if and only if
one is a scalar multiple of the other.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-160

Example 4.1.5
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Given points , ,

, and , determine if and are parallel.

Solution:

By Theorem 4.1.3, and

. If
then , so and , which is

impossible. Hence is a scalar multiple of , so these
vectors are not parallel by Theorem 4.1.5.

Lines in Space

These vector techniques can be used to give a very simple way of
describing straight lines in space. In order to do this, we first need
a way to
specify the orientation of such a line.

Definition 4.3 Direction Vector of a Line

We call a nonzero vector a direction vector for

the line if it is parallel to for some pair of distinct
points and on the line.
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Figure 4.1.10

Note that any nonzero scalar multiple of would also serve as a
direction vector of the line.

We use the fact that there is exactly one line that passes through
a particular point and has a given direction vector

. We want to describe this line by giving a condition

on , , and that the point lies on this line. Let

and denote the vectors of and , respectively.

Then

Hence lies on the line if

and only if is parallel to

—that is, if and only if

for some scalar
by Theorem 4.1.5. Thus is the
vector of a point on the line if

and only if for
some scalar .

Vector Equation of a line
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The line parallel to through the point with vector
is given by

In other words, the point with vector is on this line
if and only if a real number t exists such that

.

In component form the vector equation becomes

Equating components gives a different description of the line.

Parametric Equations of a line

The line through with direction vector

is given by
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In other words, the point is on this line if
and only if a real number exists such that ,

, and .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-163

Example 4.1.6

Find the equations of the line through the points
and .

Solution:
Let
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denote the vector from to . Then is parallel to the line (

and are on the line), so serves as a direction vector for
the line. Using as the point on the line leads to the parametric
equations

Note that if is used (rather than ), the equations are

These are different from the preceding equations, but this is
merely the result of a change of parameter. In fact, .

Example 4.1.7

Determine whether the following lines intersect and, if
so, find the point of intersection.
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Solution:
Suppose with vector lies on both lines. Then

where the first (second) equation is because lies on the first
(second) line. Hence the lines intersect if and only if the three
equations

have a solution. In this case, and satisfy all three
equations, so the lines do intersect and the point of intersection is

using . Of course, this point can also be found from

using .

An interactive H5P element has been excluded from this
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version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-32

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-159

4.2 Projections and Planes

Suppose a point and a plane are given and it is desired to find the
point that lies in the plane and is closest to , as shown in Figure
4.2.1.
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Figure 4.2.1

Clearly, what is required is to
find the line through that is
perpendicular to the plane and
then to obtain as the point of
intersection of this line with the
plane. Finding the line
perpendicular to the plane
requires a way to determine
when two vectors are
perpendicular. This can be done
using the idea of the dot product

of two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in

Given vectors

and

, their dot product is a number

defined
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Because is a number, it is sometimes called the scalar
product of and

Example 4.2.1

If

and , then

.

Theorem 4.2.1

Let , , and denote vectors in (or ).

1. is a real number.
2. .

3. .
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4. .
5. for all

scalars .
6.

The readers are invited to prove these properties using the
definition of dot products.

Example 4.2.2

Verify that when ,
, and .

Solution:
We apply Theorem 4.2.1 several times:
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There is an intrinsic description of the dot product of two
nonzero vectors in . To understand it we require the following
result from trigonometry.

Laws of Cosine

If a triangle has sides , , and , and if is the interior
angle opposite then
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Figure 4.2.2

Proof:
We prove it when is acute,

that is ; the
obtuse case is similar. In Figure
4.2.2 we have
and .

Hence Pythagoras’ theorem
gives

The law of cosines follows because for
any angle .

Note that the law of cosines reduces to Pythagoras’ theorem if
is a right angle (because ).

Now let and be nonzero vectors positioned with a common
tail. Then they determine a unique angle in the range

This angle will be called the angle between and . Clearly
and are parallel if is either or . Note that we do not define
the angle between and if one of these vectors is .

The next result gives an easy way to compute the angle between
two nonzero vectors using the dot product.

Theorem 4.2.2
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Figure 4.2.4

Let and be nonzero vectors. If is the angle
between and , then

Proof:
We calculate in

two ways. First apply the law of
cosines to the triangle in Figure
4.2.4 to obtain:

On the other hand, we use Theorem 4.2.1:

Comparing these we see that
, and the result follows.

If and are nonzero vectors, Theorem 4.2.2 gives an intrinsic
description of because , , and the angle between

and do not depend on the choice of coordinate system.
Moreover, since and are nonzero ( and are nonzero
vectors), it gives a formula for the cosine of the angle :
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Since , this can be used to find .

Example 4.2.3

Compute the angle between

and

.

Solution:
Compute . Now recall

that and are defined so that ( , ) is the
point on the unit circle determined by the angle (drawn
counterclockwise, starting from the positive axis). In the present
case, we know that and that . Because

, it follows that .
If and are nonzero, the previous example shows that

has the same sign as , so
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In this last case, the (nonzero) vectors are perpendicular. The
following terminology is used in linear algebra:

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-70

Definition 4.5 Orthogonal Vectors in

Two vectors and are said to be
\textbf{orthogonal}\index{orthogonal
vectors}\index{vectors!orthogonal vectors} if or

or the angle between them is .
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Since if either or , we have the
following theorem:

Theorem 4.2.3

Two vectors and are orthogonal if and only if
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-72

Example 4.2.4

Show that the points , , and
are the vertices of a right triangle.

Solution:
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The vectors along the sides of the triangle are

Evidently , so and
are orthogonal vectors. This means sides and are
perpendicular—that is, the angle at is a right angle.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-34

Projections

In applications of vectors, it is frequently useful to write a vector as
the sum of two orthogonal vectors.
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Figure 4.2.5

If a nonzero vector is
specified, the key idea is to be
able to write an arbitrary vector

as a sum of two vectors,

where is parallel to and
is orthogonal to

. Suppose that and
emanate from a common tail
(see Figure 4.2.5). Let be the
tip of , and let denote the
foot of the perpendicular from

to the line through parallel

to .

Then has the
required properties:

1. is parallel to .

2. is orthogonal to .
3. .

Definition 4.6 Projection in

The vector in Figure 4.2.6 is called the

projection of on .

It is denoted
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In Figure 4.2.5 (a) the vector has the same direction

as ; however, and have opposite directions if the angle

between and is greater than (see Figure 4.2.5 (b)). Note that

the projection is zero if and only if and are
orthogonal.

Calculating the projection of on is remarkably easy.

Theorem 4.2.4

Let and be vectors.

1. The projection of on is given by

.

2. The vector is orthogonal to .

Proof:

The vector is parallel to and so has the form

for some scalar . The requirement that and

are orthogonal determines . In fact, it means that

by Theorem 4.2.3. If is substituted
here, the condition is

It follows that , where the assumption that

guarantees that .
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Example 4.2.5

Find the projection of

on

and express where is parallel to and

is orthogonal to .

Solution:

The projection of on is

Hence , and this is

orthogonal to by Theorem 4.2.4 (alternatively, observe that

). Since , we are done.
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Note that the idea of projections can be used to find the shortest

distance from a point to a straight line in which is the
length of the vector that’s orthogonal to the direction vector of the
line.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-36

Planes

Definition 4.7 Normal vector in a plane

A nonzero vector is called a normal for a plane if it is
orthogonal to every vector in the plane.

For example, the unit vector is a normal vector for
plane.
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Figure 4.2.6

Given a point
and a

nonzero vector , there is a
unique plane through with
normal , shaded in Figure
4.2.6. A point

lies on this
plane if and only if the vector

is orthogonal to —that

is, if and only if

. Because this gives the following result:

Scalar equation of a plane

The plane through with normal

as a normal vector is given by

In other words, a point is on this plane if
and only if , , and satisfy this equation.
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Example 4.2.8

Find an equation of the plane through

with

as normal.

Solution:
Here the general scalar equation becomes

This simplifies to .
If we write , the scalar equation shows

that every plane with normal

has a linear equation of the form
(4.2)
for some constant . Conversely, the graph of this equation is a

plane with as a normal vector (assuming that , ,

and are not all zero).

Example 4.2.9
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Find an equation of the plane through
that is parallel to the plane with equation .

Solution:
The plane with equation has normal

. Because the two planes are parallel, serves as a

normal for the plane we seek, so the equation is for
some according to (4.2). Insisting that lies on the
plane determines ; that is, . Hence,
the equation is .

Consider points and with vectors

and

.

Given a nonzero vector , the scalar equation of the plane through

with normal takes the vector form:

Vector Equation of a Plane
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The plane with normal through the point with
vector is given by

In other words, the point with vector is on the plane if
and only if satisfies this condition.

Moreover, Equation (4.2) translates as follows:
Every plane with normal has vector equation for

some number .

Example 4.2.10

Find the shortest distance from the point
to the plane with equation . Also find
the point on this plane closest to .

Solution:
The plane in question has

normal .

Choose any point on the
plane—say
—and let be the
point on the plane closest to
(see the diagram). The vector
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from to is . Now erect with its tail at .

Then and is the projection of on :

Hence the distance is . To calculate

the point , let

and

be the vectors of and . Then

This gives the coordinates of .
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-71

The Cross Product

If , , and are three distinct points in that are not all
on some line, it is clear geometrically that there is a unique plane
containing all three. The vectors and both lie in this
plane, so finding a normal amounts to finding a nonzero vector
orthogonal to both and . The cross product provides a
systematic way to do this.

Definition 4.8 Cross Product

Given vectors and ,

define the cross product by
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Because it is a vector, is often called the vector product.
There is an easy way to remember this definition using the
coordinate vectors:

They are vectors of length pointing along the positive , , and
axes. The reason for the name is that any vector can be written as

With this, the cross product can be described as follows:

Determinant form of the cross product

224 | Vector Geometry



If and are two vectors,

then

where the determinant is expanded along the first
column.

Example 4.2.11

If and , then
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Observe that is orthogonal to both and in Example
4.2.11. This holds in general as can be verified directly by computing

and , and is recorded as the first part
of the following theorem. It will follow from a more general result
which, together with the second part, will be proved later on.

Theorem 4.2.5
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Let and be vectors in :

1. is a vector orthogonal to both and .

2. If and are nonzero, then if and
only if and are parallel.

Recall that

Example 4.2.12

Find the equation of the plane through ,
, and .

Solution:
The vectors

and

lie in the plane, so
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is a normal for the plane (being orthogonal to both and
). Hence the plane has equation

Since lies in the plane we have
. Hence and the

equation is . Can you verify that he same

equation can be obtained if and , or and , are
used as the vectors in the plane?

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-35

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-69
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-33

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-73

4.3 More on the Cross Product

The cross product of two -vectors

and

was defined in Section 4.2 where we observed that it can be best
remembered using a determinant:
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(4.3)

Here , , and

are the coordinate vectors, and the determinant is

expanded along the first column. We observed (but did not prove)
in Theorem 4.2.5 that is orthogonal to both and . This
follows easily from the next result.

Theorem 4.3.1

If , , and ,

then .

Proof:
Recall that is computed by multiplying
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corresponding components of and and then adding.
Using equation (4.3), the result is:

where the last determinant is expanded along column 1.
The result in Theorem 4.3.1 can be succinctly stated as follows: If

, , and are three vectors in , then

where denotes the matrix with , , and as

its columns. Now it is clear that is orthogonal to both and
because the determinant of a matrix is zero if two columns are

identical.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-81

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-75

Because of (4.3) and Theorem 4.3.1, several of the following
properties of the cross product follow from
properties of determinants (they can also be verified directly).

Theorem 4.3.2

Let , , and denote arbitrary vectors in .

1. is a vector.
2. is orthogonal to both and .

3. .

4. .
5. .
6. for any

scalar .
7. .
8. .

We have seen some of these results in the past; can you prove 6,7,
and 8?
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-82

We now come to a fundamental relationship between the dot and
cross products.

Theorem 4.3.3 Lagrange Identity

If and are any two vectors in , then

Proof:
Given and , introduce a coordinate system and write

and

in component form. Then all the terms in the

identity can be computed in terms of the components.
An expression for the magnitude of the vector can be

easily obtained from the Lagrange identity. If is the angle between
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Figure 4.3.1

and , substituting into the
Lagrange identity gives

using the fact that . But is
nonnegative on the range , so taking the positive
square root of both sides gives

This expression for
makes no reference

to a coordinate system and,
moreover, it has a nice
geometrical interpretation. The
parallelogram determined by
the vectors and has base
length and altitude

. Hence the area of the parallelogram formed by and
is

Theorem 4.3.4

If and are two nonzero vectors and is the angle
between and , then:

1. the area of the
parallelogram determined by and .

2. and are parallel if and only if .
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Proof of 2:

By (1), if and only if the area of the parallelogram is
zero. The area vanishes if and only if and have the same or
opposite direction—that is, if and only if they are parallel.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-80

Example 4.3.1

Find the area of the triangle with vertices ,
, and .

Solution:
We have

and . The area of the

triangle is half the area of the parallelogram formed by these

vectors, and so equals . We have
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Figure 4.3.2

so the area of the triangle is

If three vectors , , and
are given, they determine a
“squashed” rectangular solid
called a parallelepiped (Figure
4.3.2), and it is often useful to
be able to find the volume of
such a solid. The base of the
solid is the parallelogram
determined by and , so it

has area . The height of the solid is the length of
the projection of on . Hence

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-77
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Thus the volume of the parallelepiped is .
This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three
vectors , , and is given by .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-76

Example 4.3.2

Find the volume of the parallelepiped determined by the
vectors
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Solution:
By Theorem 4.3.1,

.

Hence the volume is by Theorem
4.3.5.

We can now give an intrinsic description of the cross product
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-78

Right-hand Rule
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If the vector is grasped in the right hand and the
fingers curl around from to through the angle , the
thumb points in the direction for

To indicate why this is true, introduce coordinates in as
follows: Let and have a common tail , choose the origin at

, choose the axis so that points in the positive direction,
and then choose the axis so that is in the – plane and the
positive axis is on the same side of the axis as . Then, in this
system, and have component form

and

where and . Can you draw a graph based on the
description here?

The right-hand rule asserts that should point in the
positive direction. But our definition of gives

and has the positive direction because .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-79

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=73#h5p-74
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5. Vector Space [latex size
="40"]\mathbb{R}^n[/latex]

5.1 Subspaces and Spanning

In Section 2.2 we introduced the set of all -tuples (called
\textit{vectors}), and began our investigation of the matrix
transformations given by matrix multiplication by an

matrix. Particular attention was paid to the euclidean plane

where certain simple geometric transformations were seen to
be matrix transformations.

In this chapter we investigate in full generality, and
introduce some of the most important concepts and methods in
linear algebra. The -tuples in will continue to be denoted ,

, and so on, and will be written as rows or columns depending on
the context.

Subspaces of

Definition 5.1 Subspaces of
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A set of vectors in is called a subspace of if it
satisfies the following properties:

S1. The zero vector .

S2. If and , then .

S3. If , then for every real number .

We say that the subset is closed under addition if S2 holds, and
that is closed under scalar multiplication if S3 holds.

Clearly is a subspace of itself, and this chapter is about these
subspaces and their properties. The set , consisting of
only the zero vector, is also a subspace because and

for each in ; it is called the zero subspace. Any
subspace of other than or is called a proper
subspace.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-85
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We saw in Section 4.2 that
every plane through the

origin in has equation
where

, , and are not all zero.

Here is a normal

for the plane and

where

and denotes the dot product introduced in

Section 2.2 (see the diagram). Then is a subspace of . Indeed we
show that satisfies S1, S2, and S3 as follows:

S1. because ;
S2. If and , then

, so
;

S3. If , then , so
.

Example 5.1.1

Planes and lines through the origin in are all
subspaces of .
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Solution:
We proved the statement for planes above. If is a line through

the origin with direction vector , then . Can
you verify that satisfies S1, S2, and S3?

Example 5.1.1 shows that lines through the origin in are
subspaces; in fact, they are the only proper subspaces of .
Indeed, we will prove that lines and planes through the origin in
are the only proper subspaces of . Thus the geometry of lines
and planes through the origin is captured by the subspace concept.
(Note that every line or plane is just a translation of one of these.)

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-86

Subspaces can also be used to describe important features of an
matrix . The null space of , denoted , and the

image space of , denoted , are defined by

In the language of Chapter 2, consists of all solutions

in of the homogeneous system , and is the set
of all vectors in such that has a solution . Note

that is in if it satisfies the condition , while
consists of vectors of the form for some in . These

two ways to describe subsets occur frequently.
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Example 5.1.2

If is an matrix, then:

1. is a subspace of .
2. is a subspace of .

Solution:

1. The zero vector lies in because . If
and are in , then and are in

because they satisfy the required condition:

Hence satisfies S1, S2, and S3, and so is a subspace of
.

2. The zero vector lies in because .
Suppose that and are in , say and

where and are in . Then

show that and are both in (they have the
required form). Hence is a subspace of .

There are other important subspaces associated with a matrix
that clarify basic properties of . If is an matrix and is
any number, let
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A vector is in if and only if , so
Example 5.1.2 gives:

Example 5.1.3

is a subspace of for
each matrix and number .

is called the eigenspace of corresponding to . The
reason for the name is that, in the terminology of Section 3.3, is
an eigenvalue of if . In this case the nonzero
vectors in are called the eigenvectors of corresponding
to .

The reader should not get the impression that every subset of
is a subspace. For example:

Hence neither nor is a subspace of .
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-83

Spanning sets

Let and be two nonzero, nonparallel vectors in with their
tails at the origin. The plane through the origin containing these
vectors is described in Section 4.2 by saying that is
a normal for , and that consists of all vectors such that

.
While this is a very useful way to look at planes, there is another
approach that is at least as useful in and, more importantly,
works for all subspaces of for any .

The idea is as follows:
Observe that, by the diagram, a
vector is in if and only if
it has the form

for certain real numbers
and (we say that is a linear
combination of and ).

Hence we can describe as

and we say that is a spanning set for . It is this notion
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of a spanning set that provides a way to describe all subspaces of
.

As in Section 1.3, given vectors in , a vector
of the form

is called a linear combination of the , and is called the
coefficient of in the linear combination.

Definition 5.2 Linear Combinations and Span in

The set of all such linear combinations is called the span
of the and is denoted

If , we say that is
spanned by the vectors , and that the
vectors span the space .

Here are two examples:

which we write as for simplicity.

In particular, the above discussion shows that, if and are two
nonzero, nonparallel vectors in , then

is the plane in containing and . Moreover, if is any
nonzero vector in (or ), then
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is the line with direction vector . Hence lines and planes can
both be described in terms of spanning sets.

Example 5.1.4

Let and in
. Determine whether or

are in .

Solution:
The vector is in if and only if for scalars

and . Equating components gives equations

This linear system has solution and , so is
in . On the other hand, asking that leads to
equations

and this system has no solution. So does not lie in .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-87
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Theorem 5.1.1

Let in . Then:

1. is a subspace of containing each .
2. If is a subspace of and each , then

.

Proof:

1. The zero vector is in because
is a linear combination of

the . If and
are in , then

and are in because

Finally each is in (for example,
) so S1, S2, and S3 are

satisfied for , proving (1).
2. Let where the are

scalars and each . Then each because
satisfies S3. But then because satisfies S2

(verify). This proves (2).
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Condition (2) in Theorem 5.1.1 can be expressed by saying that
is the smallest subspace of that

contains each . This is useful for showing that two subspaces
and are equal, since this amounts to showing that both

and . Here is an example of how it is used.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-88

Example 5.1.5

If and are in , show that
.

Solution:
Since both and are in , Theorem

5.1.1 gives

But and

are both in
, so
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again by Theorem 5.1.1. Thus
, as desired.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-91

It turns out that many important subspaces are best described
by giving a spanning set. Here are three examples, beginning with
an important spanning set for itself. Column of the
identity matrix is denoted and called the th coordinate
vector in , and the set is called the standard
basis of . If

is any vector in , then

, as the reader can verify.
This proves:

Example 5.1.6

where
are the columns of .
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-84

If is an matrix , the next two examples show that it
is a routine matter to find spanning sets for and .

Example 5.1.7

Given an matrix , let denote

the basic solutions to the system given by the
gaussian algorithm. Then

Solution:

If , then so Theorem 1.3.2 shows that
is a linear combination of the basic solutions; that is,

. On the other hand, if
is in , then

for scalars , so
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This shows that , and hence that
. Thus we have equality.

Example 5.1.8

Let denote the columns of the
matrix . Then

Solution:
If is the standard basis of , observe that

Hence is in for each , so
.

Conversely, let be in , say for some in .
If

, then Definition 2.5 gives

This shows that , and the
result follows.
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GeoGebra Exercise: Linear Combination of vectors

https://www.geogebra.org/m/Q4hT3V5N
Please answer these questions after you open the webpage:

1. Set and . Set

2. Click “start animation” to see which linear combination of

and will produce the vector

3. Change and .
Randomly choose a point P.
4. Click “start animation” to see which linear combination of

and will produce the vector Write it down.

5. What if we set and
? Can you explain what’s happening now? Would you still be

able to find a linear combination of and to

produce a vector

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-89
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-90

5.2 Independence and Dimension

Some spanning sets are better than others. If
is a subspace of , then every

vector in can be written as a linear combination of the in
at least one way. Our interest here is in spanning sets where each
vector in has exactly one representation as a linear combination
of these vectors.

Linear Independence

Given in , suppose that two linear
combinations are equal:

We are looking for a condition on the set of
vectors that guarantees that this representation is unique; that is,

for each . Taking all terms to the left side gives
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so the required condition is that this equation forces all the
coefficients to be zero.

Definition 5.3 Linear Independence in

We call a set of vectors linearly
independent if it satisfies the following condition:

Theorem 5.2.1

If is an independent set of vectors
in , then every vector in has
a unique representation as a linear combination of the .

It is useful to state the definition of independence in different
language. Let us say that a linear combination vanishes if it equals
the zero vector, and
call a linear combination trivial if every coefficient is zero. Then the
definition of independence can be compactly stated as follows:

A set of vectors is independent if and only if the only linear
combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is
independent:
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Independence Test

To verify that a set of vectors in
is independent, proceed as follows:

1. Set a linear combination equal to zero:
.

2. Show that for each (that is, the linear
combination is trivial).

Of course, if some nontrivial linear combination vanishes,
the vectors are not independent.

Example 5.2.1

Determine whether
is

independent in .

Solution:
Suppose a linear combination vanishes:

Equating corresponding entries gives a system of four equations:
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The only solution is the trivial one (please
verify), so these vectors are independent by the independence test.

Example 5.2.2

Show that the standard basis of
is independent.

Solution:
The components of are

So the linear combination vanishes if and only if
each . Hence the independence test applies.

Example 5.2.3

If is independent, show that
is also independent.

Solution:

If , collect terms to get

. Since is independent
this combination must be trivial; that is, and

. These equations have only the trivial solution
, as required.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-93

Example 5.2.4

Show that the zero vector in does not belong to any
independent set.

Solution:
No set of vectors is independent because

we have a vanishing, nontrivial linear combination
.

Example 5.2.5

Given in , show that is independent if and

only if .
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Solution:

A vanishing linear combination from takes the form

, in . This implies that because .

Example 5.2.6

Show that the nonzero rows of a row-echelon matrix
are independent.

Solution:
We illustrate the case with 3 leading s; the general case is

analogous. Suppose has the form

where indicates a nonspecified number. Let , , and
denote the nonzero rows of . If
we show that , then , and finally . The
condition becomes

Equating second entries show that , so the condition
becomes . Now the same argument shows
that . Finally, this gives and we obtain
.

A set of vectors in is called linearly dependent (or simply
dependent) if it is not linearly independent, equivalently if some
nontrivial linear combination vanishes.
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Example 5.2.7

If and are nonzero vectors in , show that
is dependent if and only if and are parallel.

Solution:
If and are parallel, then one is a scalar multiple of the

other, say for some scalar . Then the nontrivial linear

combination vanishes, so is dependent.

Conversely, if is dependent, let be
nontrivial, say . Then so and are parallel.
A similar argument works if .

With this we can give a geometric description of what it means
for a set in to be independent. Note that this
requirement means that is also independent (

means that ), so
is the plane containing , , and (see the

discussion preceding Example 5.1.4). So we assume that is
independent in the following example.

Examples 5.2.8
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Let , , and be nonzero vectors in where
independent. Show that is

independent if and only if is not in the plane
. This is illustrated in the diagrams.

Solution:
If is independent, suppose is in the plane

, say , where and are in

. Then , contradicting the independence
of .

On the other hand, suppose that is not in ; we must show

that is independent. If where
, , and are in , then since otherwise

is in . But then , so
by our assumption. This shows that is

independent, as required.
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By Theorem 2.4.5, the following conditions are equivalent for an
matrix :

1. is invertible.

2. If where is in , then .

3. has a solution for every vector in .

While condition 1 makes no sense if is not square, conditions
2 and 3 are meaningful for any matrix and, in fact, are related
to independence and spanning. Indeed, if are the
columns of , and if we write

, then

by Definition 2.5. Hence the definitions of independence and
spanning show, respectively, that condition 2 is equivalent to the
independence of and condition 3 is equivalent
to the requirement that . This
discussion is summarized in the following theorem:

Theorem 5.2.2

If is an matrix, let denote
the columns of .

1. is independent in if and

only if , in , implies .
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2. if and only if

has a solution for every vector in
.

For a square matrix , Theorem 5.2.2 characterizes the invertibility
of in terms of the spanning and independence of its columns
(see the discussion preceding Theorem 5.2.2). It is important to
be able to discuss these notions for rows. If are

rows, we define to be the set
of all linear combinations of the (as matrices), and we say that

is linearly independent if the only vanishing
linear combination is the trivial one (that is, if

is independent in , as the reader can
verify).

Theorem 5.2.3

The following are equivalent for an matrix :

1. is invertible.
2. The columns of are linearly independent.
3. The columns of span .
4. The rows of are linearly independent.
5. The rows of span the set of all rows.

Proof:
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Let denote the columns of .
(1) (2). By Theorem 2.4.5, is invertible if and only if

implies ; this holds if and only if
is independent by Theorem 5.2.2.

(1) (3). Again by Theorem 2.4.5, is invertible if and only if

has a solution for every column in ; this holds if
and only if by Theorem 5.2.2.

(1) (4). The matrix is invertible if and only if is invertible
(by Corollary 2.4.1 to Theorem 2.2.4); this in turn holds if and only
if has independent columns (by (1) (2)); finally, this last
statement holds if and only if has independent rows (because the
rows of are the transposes of the columns of ).

(1) (5). The proof is similar to (1) (4).

Example 5.2.9

Show that
is

independent in .

Solution:

Consider the matrix with the

vectors in as its rows. A routine computation shows that
, so is invertible. Hence is independent

by Theorem 5.2.3. Note that Theorem 5.2.3 also shows that
.
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-92

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-100

Dimension

It is common geometrical language to say that is 3-dimensional,
that planes are 2-dimensional and that lines are 1-dimensional. The
next theorem is a basic tool for clarifying this idea of “dimension”.

Theorem 5.2.4 Fundamental Theorem
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Let be a subspace of . If is spanned by
vectors, and if contains linearly independent vectors,
then

Definition 5.4 Basis of

If is a subspace of , a set of
vectors in is called a basis of if it satisfies the
following two conditions:

1. is linearly independent.
2. .

Theorem 5.2.5 Invariance Theorem

If and are
bases of a subspace of , then .

Proof:
We have by the fundamental theorem because

spans , and is
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independent. Similarly, by interchanging ‘s and ‘s we get
. Hence .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-98

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-99

Definition 5.5 Dimension of a Subspace of

If is a subspace of and is
any basis
of , the number, , of vectors in the basis is called the
dimension of , denoted
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The importance of the invariance theorem is that the dimension of
can be determined by counting the number of vectors in any

basis.
Let denote the standard basis of , that

is the set of columns of the identity matrix. Then
by Example 5.1.6, and

is independent by Example 5.2.2. Hence it is
indeed a basis of in the present terminology, and we have

Example 5.2.10

and is a basis.

This agrees with our geometric sense that is two-dimensional
and is three-dimensional. It also says that is one-
dimensional, and is a basis. Returning to subspaces of , we
define

This amounts to saying has a basis containing no vectors.
This makes sense because cannot belong to any independent set.

Example 5.2.11
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Let . Show that is a

subspace of , find a basis, and calculate .

Solution:
Clearly,

where

and . It follows that

, and hence that is a subspace of .

Moreover, if , then

so . Hence is independent,

and so a basis of . This means .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-97
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While we have found bases in many subspaces of , we have not
yet shown that every subspace has a basis.

Theorem 5.2.6

Let be a subspace of . Then:

1. has a basis and .
2. Any independent set in can be enlarged (by

adding vectors from the standard basis) to a basis of
.

3. Any spanning set for can be cut down (by
deleting vectors) to a basis of .

Example 5.2.3

Find a basis of containing where
and .

Solution:
By Theorem 5.2.6 we can find such a basis by adding vectors from

the standard basis of to . If we try , we
find easily that is independent. Now add another vector
from the standard basis, say .

Again we find that is independent. Since
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has vectors, then must span by Theorem
5.2.7 below (or simply verify it directly). Hence is a basis of .

Theorem 5.2.7

Let be a subspace of where and let
be a set of vectors in .

Then is independent if and only if spans .

Proof:
Suppose is independent. If does not span then, by

Theorem 5.2.6, can be enlarged to a basis of containing more
than vectors. This contradicts the invariance theorem because

, so spans . Conversely, if spans but is not
independent, then can be cut down to a basis of containing
fewer than vectors, again a contradiction. So is independent,
as required.

Theorem 5.2.8

Let be subspaces of . Then:

1. .
2. If , then .

Proof:
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Write , and let be a basis of .

1. If , then is an independent set in
containing more than vectors, contradicting the
fundamental theorem. So .

2. If , then is an independent set in
containing = vectors, so spans by
Theorem~??. Hence , proving (2).

It follows from Theorem 5.2.8 that if is a subspace of , then
is one of the integers , and that:

The other subspaces of are called proper. The following
example uses Theorem 5.2.8 to show that the proper subspaces of

are the lines through the origin, while the proper subspaces of
are the lines and planes through the origin.

Example 5.2.14

1. If is a subspace of or , then
if and only if is a line through the origin.

2. If is a subspace of , then if and
only if is a plane through the origin.

Solution:

1. Since , let be a basis of . Then
, so is the line
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through the origin with direction vector . Conversely each

line with direction vector has the form

. Hence is a basis of , so has
dimension 1.

2. If has dimension 2, let be a basis of .
Then and are not parallel (by Example 5.2.7) so

. Let in
denote the plane through the origin with normal . Then is
a subspace of (Example 5.1.1) and both and lie in
(they are orthogonal to ), so = by
Theorem 5.1.1. Hence

Since and , it follows from
Theorem 5.2.8 that or , whence or . But

(for example, is not in ) and so is a plane
through the origin.

Conversely, if is a plane through the origin, then
, , , or by Theorem 5.2.8. But or because

and , and by (1). So
.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-94
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-95

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-96

5.3 Orthogonality

Length and orthogonality are basic concepts in geometry and, in
and , they both can be defined using the dot product. In

this section we extend the dot product to vectors in , and so
endow with euclidean geometry. We then introduce the idea
of an orthogonal basis—one of the most useful concepts in linear
algebra, and begin exploring some of its applications.
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Dot Product, Length, and Distance

If and are two
-tuples in , recall that their dot product was defined in Section

2.2 as follows:

Observe that if and are written as columns then
is a matrix product (and if they are

written as rows). Here is a matrix, which we take to be
a number.

Definition Length in

As in , the length of the vector is defined by

Where indicates the positive square root.

A vector of length is called a unit vector. If , then
and it follows easily that

is a unit vector (see Theorem 5.3.6 below), a fact that we shall

use later.

Example 5.3.1
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If and in ,
then and

. Hence
is a unit vector; similarly is a unit vector.

Theorem 5.3.1

Let , , and denote vectors in . Then:

1. .
2. .
3. for all scalars

.
4. .

5. , and if and only if .
6. for all scalars .

Proof:
(1), (2), and (3) follow from matrix arithmetic because

; (4) is clear from the definition; and (6) is a routine

verification since . If , then
so if and only if

. Since each is a real number this
happens if and only if for each ; that is, if and only if

. This proves (5).
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Because of Theorem 5.3.1, computations with dot products in
are similar to those in . In particular, the dot product

equals the sum of terms, , one for each choice of
and . For example:

holds for all vectors and .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-103

Example 5.3.2

Show that
for any and in .

Solution:
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Using Theorem 5.3.1 several times:

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-108

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-109

Example 5.3.3

Suppose that for
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some vectors . If for each where is in

, show that .

Solution:

We show by showing that and using (5) of

Theorem 5.3.1. Since the span , write

where the are in . Then

We saw in Section 4.2 that if and are nonzero vectors in

, then where is the angle between and

. Since for any angle , this shows that
. In this form the result holds in .

Theorem 5.3.2 Cauchy Inequality

If and are vectors in , then
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Moreover if and only if one of
and is a multiple of the other.

Proof:

The inequality holds if or (in fact it is equality).
Otherwise, write and for
convenience. A computation like that preceding Example 5.3.2 gives

(5.1)

It follows that and , and
hence that . Hence

, proving the Cauchy inequality.
If equality holds, then , so or

. Hence Equation (5.1) shows that or
, so one of and is a multiple of the other (even

if or ).
There is an important consequence of the Cauchy inequality.

Given and in , use Example 5.3.2 and the fact that
to compute

Taking positive square roots gives:

Corollary 5.3.1 Triangle Inequality

If and are vectors in , then
.
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The reason for the name comes from the observation that in
the inequality asserts that the sum of the lengths of two sides of a
triangle is not less than the length of the third side.

Definition 5.7 Distance in

If and are two vectors in , we define the
distance between and by

Theorem 5.3.3

If , , and are three vectors in we have:

1. for all and .
2. if and only if .
3. for all and .
4. for all , , and

. \quad Triangle inequality.

Proof:
(1) and (2) restate part (5) of Theorem 5.3.1 because

, and (3) follows because
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for every vector in . To prove (4) use the Corollary to Theorem
5.3.2:

Orthogonal Sets and the Expansion Theorem

Definition 5.8 Orthogonal and Orthonormal Sets

We say that two vectors and in are orthogonal
if , extending the terminology in (See
Theorem 4.2.3). More generally, a set
of vectors in is called an orthogonal set if

Note that is an orthogonal set if . A set
of vectors in is called

orthonormal if it is orthogonal and, in addition, each is a
unit vector:
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-102

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-107

Example 5.3.4

The standard basis is an
orthonormal set in .

Example 5.3.5
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If is orthogonal, so also is
for any nonzero scalars .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-106

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-105

If , it follows from item (6) of Theorem 5.3.1 that is a

unit vector, that is it has length .

Definition 5.9 Normalizing an Orthogonal Set

If is an orthogonal set, then
is an orthonormal
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set, and we say that it is the result of normalizing the
orthogonal set .

Example 5.3.6

If , , ,

and

then is an orthogonal set in as is
easily verified. After normalizing, the corresponding

orthonormal set is

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-101
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The most important result about orthogonality is Pythagoras’
theorem. Given orthogonal vectors and in , it asserts that

. In this form the result holds for any orthogonal set in .

Theorem 5.3.4 Pythagoras’ Theorem

If is an orthogonal set in , then

Proof:
The fact that whenever gives

This is what we wanted.
If and are orthogonal, nonzero vectors in , then they are

certainly not parallel, and so are linearly independent Example 5.2.7.
The next theorem gives a far-reaching extension of this observation.
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Theorem 5.3.5

Every orthogonal set in is linearly independent.

Proof:
Let be an orthogonal set in and suppose

a linear combination vanishes, say:
. Then

Since , this implies that . Similarly
for each .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:
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https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-104

Theorem 5.3.6

Let be an orthogonal basis of a
subspace U of . If is any vector in , we have

Proof:

Since spans , we have

where the are scalars. To

find we take the dot product of both sides with :
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Since , this gives . Similarly,

for each .
The expansion in Theorem 5.3.6 of as a linear combination

of the orthogonal basis is called the Fourier

expansion of , and the coefficients are called the

Fourier coefficients. Note that if is actually

orthonormal, then for each .

Example 5.3.7

Expand as a linear combination of the

orthogonal basis of given in
Example 5.3.6.
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Solution:

We have , ,

, and so the Fourier
coefficients are

The reader can verify that indeed

.

5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the
definition of the rank of a matrix given in Section 1.2, and to study
its properties. This requires that we deal with rows and columns
in the same way. While it has been the custom to write the
-tuples as columns, in this section we will frequently write them
as rows. Subspaces, independence, spanning, and dimension are
defined for rows using matrix operations, just as for columns. If
is an matrix, we define:

Definition 5.10 Column and Row Space of a Matrix
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The column space, , of is the subspace of
spanned by the columns of .

The row space, , of is the subspace of
spanned by the rows of .

Lemma 5.4.1

Let and denote matrices.

1. If by elementary row operations, then
.

2. If by elementary column operations, then
.

Proof:
We prove (1); the proof of (2) is analogous. It is enough to do

it in the case when by a single row operation. Let
denote the rows of . The row operation

either interchanges two rows, multiplies a row by a
nonzero constant, or adds a multiple of a row to a different row. We
leave the first two cases to the reader. In the last case, suppose that

times row is added to row where . Then the rows of
are , and Theorem

5.1.1 shows that

That is, .
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If is any matrix, we can carry by elementary row
operations where is a row-echelon matrix. Hence

by Lemma 5.4.1; so the first part of the following
result is of interest.

Lemma 5.4.2

If is a row-echelon matrix, then

1. The nonzero rows of are a basis of .
2. The columns of containing leading ones are a

basis of .

Proof:
The rows of are independent, and they span by

definition. This proves (1).
Let denote the columns of containing

leading s. Then is independent because the
leading s are in different rows (and have zeros below and to the left
of them). Let denote the subspace of all columns in in which
the last entries are zero. Then (it is just
with extra zeros). Hence the independent set
is a basis of by Theorem 5.2.7. Since each is in , it
follows that , proving (2).

Let be any matrix and suppose is carried to some row-
echelon matrix by row operations. Note that is not unique. In
Section 1.2 we defined the rank of , denoted , to be the
number of leading s in , that is the number of nonzero rows of

. The fact that this number does not depend on the choice of
was not proved. However part 1 of Lemma 5.4.2 shows that
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and hence that is independent of .
Lemma 5.4.2 can be used to find bases of subspaces of

(written as rows). Here is an example.

Example 5.4.1

Find a basis of

.

Solution:

is the row space of . This matrix has

row-echelon form , so

is basis of by Lemma 5.4.1.
Note that is another basis

that avoids fractions.

Theorem 5.4.1 Rank Theorem

Let denote any matrix of rank . Then
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Moreover, if is carried to a row-echelon matrix by
row operations, then

1. The nonzero rows of are a basis of .
2. If the leading s lie in columns of

, then columns of are a basis of
.

Proof:
We have by Lemma 5.4.1, so (1) follows from

5.4.2. Moreover, for some invertible matrix . Now
write where are
the columns of . Then

Thus, in the notation of (2), the set
is a basis of by Lemma

5.4.2. So, to prove (2) and the fact that , it is
enough to show that is a basis of

. First, is linearly independent because is invertible
(verify), so we show that, for each , column is a linear
combination of the . But is column of , and so is
a linear combination of the , say

where each
is a real number.

Since is invertible, it follows that
and the proof is

complete.

296 | Vector Space [latex size ="40"]\mathbb{R}^n[/latex]



Example 5.4.2

Compute the rank of and

find bases for and .

Solution:
The reduction of to row-echelon form is as follows:

Hence = 2, and

is a basis of by 5.4.2. Since the leading s are in columns 1
and 3 of the row-echelon matrix, Theorem 5.4.1 shows that columns
1 and 3 of are a basis

of .
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Corollary 5.4.1

If is any matrix, then .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-116

If is an matrix, we have and
. Hence Theorem 5.2.8 shows that

and
. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If is an matrix, then and
.
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Corollary 5.4.3

whenever
and are invertible.

Proof:
Lemma 5.4.1 gives . Using this and

Corollary 5.4.1 we get

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-117

Lemma 5.4.3
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Let , , and be matrices of sizes , ,
and respectively.

1. , with equality if
for some .

2. , with equality if
for some .

Proof:
For (1), write where is column

of . Then we have , and each
is in by Definition 2.4. It follows that
. If , we obtain

in the same way. This
proves (1).

As to (2), we have
by (1), from

which . If , this is equality as
in the proof of (1).

Corollary 5.4.4

If is and is , then
and .

Proof:
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By Lemma 5.4.3 and
, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with
an matrix : the null space and the image space

Using rank, there are simple ways to find bases of these spaces.
If has rank , we have by Example 5.1.8,
so . Hence Theorem 5.4.1
provides a method of finding a basis of . This is recorded as
part (2) of the following theorem.

Theorem 5.4.2

Let denote an matrix of rank . Then

1. The basic solutions to the system

provided by the gaussian algorithm are a
basis of , so .

2. Theorem 5.4.1 provides a basis of
, and .

Proof:
It remains to prove (1). We already know (Theorem 2.2.1) that

is spanned by the basic solutions of
. Hence using Theorem 5.2.7, it suffices to show that

. So let be a basis of
, and extend it to a basis

of (by Theorem 5.2.6). It is
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enough to show that is a basis of ;
then by the above and so as required.

Spanning. Choose in , in , and write

where the are in .
Then because

.
Independence. Let ,

in . Then is in , so
for some

in . But then the independence of the shows that
for every .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-111

Example 5.4.3

If , find bases of

and , and so find their dimensions.
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Solution:

If is in , then , so is given by solving

the system . The reduction of the augmented matrix to
reduced form is

Hence . Here, has
basis

by Theorem 5.4.1 because the leading s

are in columns 1 and 3. In particular, as
in Theorem 5.4.2.

Turning to , we use gaussian elimination. The leading
variables are and , so the nonleading variables become
parameters: and . It follows from the reduced
matrix that and , so the general
solution is

Vector Space [latex size ="40"]\mathbb{R}^n[/latex] | 303



Hence . But and are solutions (basic), so

However Theorem 5.4.2 asserts that is a basis of
. (In fact it is easy to verify directly that is

independent in this case.) In particular,
.

Let be an matrix. Corollary 5.4.2 asserts that
and , and it is natural to ask when

these extreme cases arise. If are the columns of
, Theorem 5.2.2 shows that spans if and

only if the system is consistent for every in , and

that is independent if and only if ,

in , implies . The next two useful theorems improve on
both these results, and relate them to when the rank of is or

.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-113

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-114
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-115

Theorem 5.4.3

The following are equivalent for an matrix :

1. .
2. The rows of span .
3. The columns of are linearly independent in .
4. The matrix is invertible.
5. for some matrix .

6. If , in , then .

Proof:
(1) (2). We have , and by

(1), so by Theorem 5.2.8. This is (2).
(2) (3). By (2), , so . This means

. Since the columns of span , they
are independent by Theorem 5.2.7.
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(3) (4). If , in , we show that
(Theorem 2.4.5). We have

Hence , so by (3) and Theorem 5.2.2.
(4) (5). Given (4), take .

(5) (6). If , then left multiplication by (from (5))

gives .
(6) (1). Given (6), the columns of are independent by

Theorem 5.2.2. Hence , and (1) follows.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-118

Theorem 5.4.4

The following are equivalent for an matrix :

1. .
2. The columns of span .
3. The rows of are linearly independent in .
4. The matrix is invertible.
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5. for some matrix .

6. The system is consistent for every in
.

Proof:
(1) (2). By (1), , so by

Theorem 5.2.8.
(2) (3). By (2), , so . This means

. Since the rows of span , they
are independent by Theorem 5.2.7.

(3) (4). We have by (3), so the matrix
has rank . Hence applying Theorem 5.4.3 to in place of

shows that is invertible, proving (4).
(4) (5). Given (4), take in (5).
(5) (6). Comparing columns in gives

for each , where and denote column of and

respectively. Given in , write , in .

Then holds with as the reader can

verify.
(6) (1). Given (6), the columns of span by Theorem 5.2.2.

Thus and (1) follows.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-110
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-112

5.5 Similarity and Diagonalization

Similar Matrices

Definition 5.11 Similar Matrices

If and are matrices, we say that and
are similar, and write , if for
some invertible matrix .

Note that if and only if where is
invertible (write ). The language of similarity is used
throughout linear algebra. For example, a matrix is diagonalizable
if and only if it is similar to a diagonal matrix.
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If , then necessarily . To see why, suppose that
. Then where

is invertible. This proves the second of the following
properties of similarity:

(5.2)

These properties are often expressed by saying that the similarity
relation is an equivalence relation on the set of matrices.
Here is an example showing how these properties are used.

Example 5.5.1

If is similar to and either or is diagonalizable,
show that the other is also diagonalizable.

Solution:
We have . Suppose that is diagonalizable, say

where is diagonal. Since by (2) of (5.2), we
have and . Hence by (3) of (5.2), so
is diagonalizable too. An analogous argument works if we assume
instead that is diagonalizable.

Similarity is compatible with inverses, transposes, and powers:
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-127

Definition 5.12 Trace of a matrix

The trace of an matrix is defined to be
the sum of the main diagonal elements of .

In other words:

It is evident that and that
holds for all matrices and and all

scalars . The following fact is more surprising.

Lemma 5.5.1
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Let and be matrices. Then
.

Proof:
Write and . For each , the -entry

of the matrix is given as follows:
.

Hence

Similarly we have . Since these

two double sums are the same, Lemma 5.5.1 is proved.

Theorem 5.5.1

If and are similar matrices, then and
have the same determinant, rank, trace, characteristic
polynomial, and eigenvalues.

Proof:
Let for some invertible matrix . Then we have
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Similarly, by
Corollary 5.4.2. Next Lemma 5.5.1 gives

As to the characteristic polynomial,

Finally, this shows that and have the same eigenvalues
because the eigenvalues of a matrix are the roots of its
characteristic polynomial.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-119
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Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not
guarantee that two matrices are similar. The matrices

and have the same

determinant, rank, trace, characteristic polynomial, and
eigenvalues, but they are not similar because

for any invertible matrix .

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-124

Diagonalization Revisited

Recall that a square matrix is diagonalizable if there exists an
invertible matrix such that is a diagonal matrix,
that is if is similar to a diagonal matrix \index{diagonal
matrices}. Unfortunately, not all matrices are diagonalizable, for
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example . Determining whether is diagonalizable is

closely related to the eigenvalues and eigenvectors of . Recall that
a number is called an eigenvalue of if for some
nonzero column in , and any such nonzero vector is called
an eigenvector of corresponding to (or simply a -eigenvector
of ). The eigenvalues and eigenvectors of are closely related to
the characteristic polynomial of , defined by

If is this is a polynomial of degree , and its
relationship to the eigenvalues is given in the following theorem.

Theorem 5.5.2

Let be an matrix.

1. The eigenvalues of are the roots of the
characteristic polynomial of .

2. The -eigenvectors are the nonzero solutions to
the homogeneous system

of linear equations with as coefficient matrix.

The next theorem will show us the condition when a square matrix
is diagonalizable.

Theorem 5.5.3
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Let be an matrix.

1. is diagonalizable if and only if has a basis
consisting of eigenvectors of .

2. When this is the case, the matrix
is invertible and

where, for
each , is the eigenvalue of corresponding to
.

The next result is a basic tool for determining when a matrix is
diagonalizable. It reveals an important connection between
eigenvalues and linear independence: Eigenvectors corresponding
to distinct eigenvalues are necessarily linearly independent.

Theorem 5.5.4

Let be eigenvectors corresponding to
distinct eigenvalues of an matrix

. Then is a linearly independent set.

Theorem 5.5.5
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If is an matrix with n distinct eigenvalues,
then is diagonalizable

Example 5.5.4

Show that is diagonalizable.

Solution:
A routine computation shows that

and so has distinct
eigenvalues , , and . Hence Theorem 5.5.5 applies.

Definition 5.1.3 Eigenspace of a Matrix

If is an eigenvalue of an matrix , define the
eigenspace of corresponding to by
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An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-120

This is a subspace of and the eigenvectors corresponding to
are just the nonzero vectors in . In fact is the

null space of the matrix :

The basic solutions of the homogeneous system

given by the gaussian algorithm form a basis for
. In particular

(5.5)

Now recall that the multiplicity of an eigenvalue of is the
number of times occurs as a root of the characteristic polynomial

of . In other words, the multiplicity of is the largest
integer such that

for some polynomial . Because of (5.5), a square matrix is
diagonalizable if and only if the multiplicity of each eigenvalue
equals . We are going to prove this, and the proof
requires the following result which is valid for any square matrix,
diagonalizable or not.

An interactive H5P element has been excluded from this
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version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-122

Lemma 5.5.3

Let be an eigenvalue of multiplicity of a square
matrix . Then .

It turns out that this characterizes the diagonalizable
matrices for which factors completely over . By this
we mean that ,
where the are real numbers (not necessarily distinct); in other
words, every eigenvalue of is real. This need not happen (consider

), which leads us to the general conclusion

regarding when a square matrix is diagonalizable.

Theorem 5.5.6
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The following are equivalent for a square matrix for
which factors completely.

1. is diagonalizable.
2. equals the multiplicity of for

every eigenvalue of the matrix

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-123

Example 5.5.5

If and
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show that is diagonalizable

but is not.

Solution:
We have so the eigenvalues are

and . The corresponding eigenspaces are
and

where

as the reader can verify. Since is independent, we have
which is the multiplicity of . Similarly,
equals the multiplicity of . Hence is

diagonalizable
by 5.5.6, and a diagonalizing matrix is .

Turning to , so the
eigenvalues are and . The corresponding
eigenspaces are and

where

Here is smaller than the multiplicity of
, so the matrix is not diagonalizable, again by Theorem 5.5.6.
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The fact that means that there is no
possibility of finding three linearly independent eigenvectors.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-121

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-125

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=76#h5p-126
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