9 Joint Mobilization

Joint Mobilization

Joint mobilization is a type of passive movement of a skeletal joint with the aim of achieving a therapeutic effect such as decreasing pain or increasing range of motion.

Classification and Mechanisms of Joint Mobilization

Joint mobilization is classified by five ‘grades’ of motion (grade 1 through grade 5), each of which describes the range of motion of the target joint during the procedure. The different grades of mobilization are believed to produce selective activation of different mechanoreceptors in the joint, but in terms of outcomes studies have demonstrated that a general approach to joint mobilization is as effective as a specific one (de Oliveira et al., 2020; McCarthy et al., 2019).

Movements are classified as

  • Anterior to Posterior (AP)
  • Medial to Lateral
  • Oscillations (which stimulate dynamic, rapidly adapting receptors, i.e., Meissner’s and Pacinian corpuscles)
  • Translation
  • Distraction is the separation of joint surfaces without rupture of their binding ligaments and without displacement

The Goals of Joint Mobilization are

  • Decrease pain in joint/periarticular structures
  • Induce reflex muscle relaxation

Grade 1

  • Small amplitude movement at the beginning range of joint play
  • Used when pain and spasm limit movement early in range of motion

Grade 2

  • Large amplitude movement at the mid-range of joint play
  • Used for pain control, spasm reduction which inhibit movement

Grade 3

  • Large amplitude movement at the end range of joint play
  • Reduce pain, and increase periarticular extensibility

Grade 4

  • Small-amplitude movement at the end of the range of joint play
  • Reduce pain, and increase periarticular extensibility

Grade 5 (also referred to as a manipulation)

  • Manipulation of high velocity and low amplitude to the anatomical end point of a joint
  • Usually accompanied by a popping sound called a cavitation.

Precautions

  • Joint ankylosis
  • Joint hypermobility
  • Rheumatoid arthritis
  • Malignancy
  • Fracture
  • Osteoporosis
  • Tuberculosis
  • Paget’s disease
  • Joint effusion
  • Severe scoliosis
  • Spondylolisthesis
  • Pregnancy

Key Takeaways

Joint mobilization is a type of passive movement of a skeletal joint with the aim of achieving a therapeutic effect. The different grades of mobilization are believed to produce selective activation of different mechanoreceptors in the joint, but in terms of outcomes studies have demonstrated that a general approach to joint mobilization is as effective as a specific one.

References and Sources

Bialosky, J. E., Beneciuk, J. M., Bishop, M. D., Coronado, R. A., Penza, C. W., Simon, C. B., & George, S. Z. (2018). Unraveling the Mechanisms of Manual Therapy: Modeling an Approach. The Journal of orthopaedic and sports physical therapy, 48(1), 8–18. doi:10.2519/jospt.2018.7476

Côté, P., Bussières, A., Cassidy, J. D., Hartvigsen, J., Kawchuk, G. N., Leboeuf-Yde, C., Mior, S., Schneider, M. (2020). A united statement of the global chiropractic research community against the pseudoscientific claim that chiropractic care boosts immunity. Chiropractic & manual therapies, 28(1), 21. https://doi.org/10.1186/s12998-020-00312-x

de Oliveira, R. F., Costa, L., Nascimento, L. P., & Rissato, L. L. (2020). Directed vertebral manipulation is not better than generic vertebral manipulation in patients with chronic low back pain: a randomised trial. Journal of physiotherapy, 66(3), 174–179. https://doi.org/10.1016/j.jphys.2020.06.007

Foster, N. E., Anema, J. R., Cherkin, D., Chou, R., Cohen, S. P., Gross, D. P., … Lancet Low Back Pain Series Working Group (2018). Prevention and treatment of low back pain: evidence, challenges, and promising directions. Lancet (London, England), 391(10137), 2368–2383. doi:10.1016/S0140-6736(18)30489-6

Funabashi, M., Nougarou, F., Descarreaux, M., Prasad, N., & Kawchuk, G. N. (2017). Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application. Spine, 42(9), 635–643. doi:10.1097/BRS.0000000000002096

Jun, P., Pagé, I., Vette, A., & Kawchuk, G. (2020). Potential mechanisms for lumbar spinal stiffness change following spinal manipulative therapy: a scoping review. Chiropractic & manual therapies, 28, 15. https://doi.org/10.1186/s12998-020-00304-x

Kawchuk, G. N., Fryer, J., Jaremko, J. L., Zeng, H., Rowe, L., & Thompson, R. (2015). Real-time visualization of joint cavitation. PloS one, 10(4), e0119470. doi:10.1371/journal.pone.0119470

McCarthy, C. J., Potter, L., & Oldham, J. A. (2019). Comparing targeted thrust manipulation with general thrust manipulation in patients with low back pain. A general approach is as effective as a specific one. A randomised controlled trial. BMJ open sport & exercise medicine, 5(1), e000514. doi:10.1136/bmjsem-2019-000514

Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science (New York, N.Y.), 150(3699), 971–979. doi:10.1126/science.150.3699.971

Nim, C. G., O’Neill, S., Geltoft, A. G., Jensen, L. K., Schiøttz-Christensen, B., & Kawchuk, G. N. (2021). A cross-sectional analysis of persistent low back pain, using correlations between lumbar stiffness, pressure pain threshold, and heat pain threshold. Chiropractic & manual therapies, 29(1), 34. https://doi.org/10.1186/s12998-021-00391-4

Navarro-Santana, M. J., Gómez-Chiguano, G. F., Somkereki, M. D., Fernández-de-Las-Peñas, C., Cleland, J. A., & Plaza-Manzano, G. (2020). Effects of joint mobilisation on clinical manifestations of sympathetic nervous system activity: a systematic review and meta-analysis. Physiotherapy, 107, 118–132. https://doi.org/10.1016/j.physio.2019.07.001

Paige, N. M., Miake-Lye, I. M., Booth, M. S., Beroes, J. M., Mardian, A. S., Dougherty, P., … Shekelle, P. G. (2017). Association of Spinal Manipulative Therapy With Clinical Benefit and Harm for Acute Low Back Pain: Systematic Review and Meta-analysis. JAMA, 317(14), 1451–1460. doi:10.1001/jama.2017.3086

Pfluegler, G., Kasper, J., & Luedtke, K. (2020). The immediate effects of passive joint mobilisation on local muscle function. A systematic review of the literature. Musculoskeletal science & practice, 45, 102106. https://doi.org/10.1016/j.msksp.2019.102106

Rubinstein, S. M., de Zoete, A., van Middelkoop, M., Assendelft, W., de Boer, M. R., & van Tulder, M. W. (2019). Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: systematic review and meta-analysis of randomised controlled trials. BMJ (Clinical research ed.), 364, l689. doi:10.1136/bmj.l689

Thomas, J. S., Clark, B. C., Russ, D. W., France, C. R., Ploutz-Snyder, R., Corcos, D. M., & RELIEF Study Investigators (2020). Effect of Spinal Manipulative and Mobilization Therapies in Young Adults With Mild to Moderate Chronic Low Back Pain: A Randomized Clinical Trial. JAMA network open, 3(8), e2012589. https://doi.org/10.1001/jamanetworkopen.2020.12589

Vigotsky, A. D., & Bruhns, R. P. (2015). The Role of Descending Modulation in Manual Therapy and Its Analgesic Implications: A Narrative Review. Pain research and treatment, 2015, 292805. doi:10.1155/2015/292805

License

Icon for the Creative Commons Attribution-NonCommercial 4.0 International License

Evidence-Based Massage Therapy by Richard Lebert is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted.

Share This Book