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Introduction to TeachSpin’s Quantum Analogs

“Quantum Analogs” is TeachSpin’s contribution te ttleaching of wave mechanics. The
idea at the heart of this apparatus is the analogiyveen the mathematics of the
Schrddinger wave equation, and the wave equatlmatsdiescribe the behavior of ordinary
sound waves in air. Parts of our acoustic apparafill allow you to explore acoustic
analogs to quantum-mechanical systems in one, hrek,t dimensions. One of the
advantages of the ‘acoustic analog’ is that soumehpmena occur on a very human scale
of length and time.

The hardware you will use is built and supportedTieachSpin, and questions about the
hardware should be directed to TeachSpin. All sy issues will also be handled by
TeachSpin.

For several of the investigations in Quantum Anglggu are welcome to use software
written and maintained by Prof. Dr. Rene Matzddink developer of the project. This
software is free, but comes without any warrantyiability. Be sure to check the internet
page Dr. Matzdorf has createdyw. physi k. uni - kassel . de/ quant um anal ogs, for
program download, manual of the program, frequemitked questions and software
updates. The page also offers several excellesualization programs that you are
welcome to download. In case of problems withahation of the connection to the
computer you may contact Prof. Matzdorf directlfdugs in the software may also be
reported to be corrected in the next updai@ {dor f @hysi k. uni - kassel . de).

A detailed description of the function of each pafrtthe Controller Box is provided in
Appendix 1. Please read it before beginning ampegrments.
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1. Standing sound waves in a tube — an analog tajaantum
mechanical particle in a box

Objective: For a simple tube, use an oscilloscope to comperedund input by a speaker at one
end to the sound received by a microphone at ther @nd.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi€@leh & Aluminum Cylinders
Sine wave generator capable of producing 1-50 kifz avpeak-to-peak voltage of 0.50 V
Two-Channel Oscilloscope

Setup:

Make a tube using the tube-pieces. Put the erckpigth the speaker on one end and the end-
piece with the microphone on the other. Attach MCBsplitter to SNE WAVE INPUT on the
Controller. Connect the output of your sine waeeegator to one side of the splitter. Use a BNC
cable to send the sound signal to the Channelt wipyour oscilloscope. Plug the lead from the
speaker end of your experimental tuberABAKER OUTPUT on the Controller. The same sine wave
now goes to both the speaker and Channel 1. Cotireemicrophone output of the tube array to
MICROPHONE INPUT. ConnectaCc MONITOR on the Controller to Channel 2 of the oscilloscope
Channel 2 will display the sound signal receivedhsy microphone. Trigger the oscilloscope on
Channel 1. Use thertENUATOR dial on the Controller to keep the signal on Cleg2nfrom going

off scale. (Appendix 1 describes the function atlepart of the Controller.)

Experiment:
Start at low frequency (100 Hz or less), and slowtyease the frequency.

Question:

What are you observing? How can you tell that gmiat a resonance? Did you notice the phase-
shift when going through a resonance? (Note tha, to unknown phase shifts in the speaker,

microphone, and electronics, the absolute phasseket input and output channel can not be

interpreted.)

Experiment:
Change the length of the tube and repeat the exrpati

Question:
Do the resonance frequencies change? Are theyrimiier when the tube is longer/shorter?

Take a full set of data for one tube length:

Measure and record the length of the tube. Meakerérst 20 resonance frequencies. Assign the
lowest resonance frequency the index number nand plot the resonance frequenggas$
function of its index number, n.
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Background:

A resonance occurs when a standing sound wavedvatoged in the tube. The sound emitted by
the speaker is reflected back and forth betweernvtbenard end-walls of the tube. The resonance
develops when, after a round trip in the tube sitiend wave is in phase with the wave emitted by
the speaker. In this case, the emitted sound eresfwith the reflected sound constructively. The
condition for resonance is fulfilled when:

2L:n%:n/1

with the length of the tubk, the speed of sound the frequency, the wavelengtt\ and an
integer numben=1,2,..,0. Resonances are observed when the tube lengthirgeger multiple
of A/2.

Analyze the data:

From the resonance frequencies plotted as funofidineir indexn, you can calculate the speed of
soundc. Make a linear fit for your data. Calculatérom the slope and determine the uncertainty
of your measurement.

Differential equation for sound and boundary conditons:
The propagation of sound waves in air can be desdtoy differential equations.
On one hand, there is the linearized Euler’s equnati
a—u=—lgradp (1.12)
ot yo,

with the velocity of the aili, the mass density of the @rand the pressure
On the other hand, the continuity equation hasetéubilled.

% _
ot

Additionally, representing compressibilityaghe density and the pressure of
the air are connected by

~pdivd (1.2)

op_1 (1.3)
00 Kp
These equations can be combined to a wave equatitime pressure
2
op_ 1, (1.4)
ot®  pk

with the Laplace operatdy. In this wave equation, however, the phase midietween velocity
and pressure of the wave is lost, since the vgld@as been eliminated. We need to refer to the
velocity again, since the boundary conditions at tiard wall can be formulated best with the
velocity. It is obvious that, at the surface o twall, the velocity perpendicular to the wall has

be zero. (The air can not move into or out ofwladl.) From eqn. (1.1), it also follows that, het
surface of the wall, the derivative of the pressarthe direction perpendicular to the wall is zero
This combination of boundary conditions is callétdNaumann boundary condition”.
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For frequencies lower than about 16 kHz, the amoismoving perpendicular to the symmetry-
axis (x-axis) of the tube. Thus, (r) =0, u,(r) =0, u, () =u,(x)and p(r) = p(X) .

The problem has now been reduced to a quasi onergional problem and we can make a
one-dimensional ansatz for the solution in the form

p(xX) = P, CoSkx— at +a) (1.5)

Here, p, represents the amplitude of the wave and musb@&atonfused with the background

air pressure of about 1000 mbawn.= 277f is the angular frequency akd= 277/1 is the wave
vector. This function describes a wave propagatintpe positive x-direction. In the tube we
find a superposition of right and left (positivedanegative x-direction) propagating waves,
since the waves are reflected at the ends of thee iTthe wavefunction is therefore given by

P(X) =3 P, COSKX— at +a) + 3 P, COSCKkX—at —a) (1.6)
This can be rewritten as
p(x) = p,coskx+ a) cosu) a.7)

Solutions of the differential equation are thosesevéunctionsp(x) that fulfill the boundary
conditions for a certain tube lendthat all times. From the boundary conditionéd(0) = 0
and @/dx(L) = 0, we can easily derive the parameters ta bed andk =n 77/L.

Dispersion of sound waves:

Redraw your graph of frequency as function of resae-index f{ vs. n) to show angular
frequency as function of wave vectafk). This new graph shows the dispersion relation of
sound waves.

Analogy to a quantum mechanical particle in a box:

The sound wave in the tube can serve as an amal@duantum mechanical particle in a one-
dimensional square potential well. The differentuation that describes the particle is
Schrddinger’s equation

ihiz//(r“,t) = —ﬁAw(F,tHV(F)z/I(F,t) (1.8)
ot 2m

with the wave functiony(r,t) , the particle mass), and a scalar potenti¥{r). In the case of a

one-dimensional square potential well with infihiteigh potential barriers at both ends, and
V = 0 in the space between the ends, the equatilutes to

1 ity =~ Ap(x) (1.9)
ot 2m ’ '

This differential equation has as a solution complaves that are scattered back and forth
between the ends of the well. The probabilityinfling the particle at a certain positignn

the well is given by the probability densiW(x,t)F. When multiplied by the elementary
chargee, it represents the charge density inside the well.
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Most of the solutions of egn. (1.9) result in tiohependent charge densities. These, however,
would emit electromagnetic waves, since chargeasing. On the other hand, there are certain
solutions that have a time independent charge tfen$hey can be found by solving the time-
independent Schrédinger equation

I S I
Ey(r) = —%At//(r) +V(F)y(r) (1.10)
In our casefor the one-dimensional square potential well,gggation simplifies to
h2
Eg(x) = -Z—Al//(X) (1.11)
m

This equation can be solved for certain eigenvatd@nergye. We make an ansatz with standing
waves of the form

Y(x) = Asinkx+a) (1.12)

At the ends of the box, where the potential isnitdly high, the wave function has to be zero
(Dirichlet boundary condition). These boundaryditons, ¢0) = 0 and¢ L) = 0, are fulfilled if
a =0 andk = n 77/L wheren is an integer. The total probability of findirget particle anywhere

in the box has to be one. This determines thaamhglitude of the wave function#s=+/2/L .

The solution of Schrodinger’s time-dependent egua(lL.9) is obtained from the solution (1.12)
by multiplying it with a time dependent phase facto

W(xt) = Asinkx+a) e’ (1.13)

You can convince yourself that, for this solutiqqzy,(x,t)|2 is indeed time-independent. The

angular frequency in this expression is giverwsyE/7 . Note that in quantum mechanics the
energy is in general connected with the frequency b

E=hf =« (1.14)
We can now calculate the eigenvalues of energyaiteagiiven by
K> Wt
E(k) = = 1.15
(k) 2m  2mlL? (1.15)

This is the dispersion relation of the quantum naeatal particle in a box.

What is analogous, what is different?

The classical sound wave in a tube and the quantaahanical electron in a square potential well
are similar in many respects, but some detailgldferent. Both the sound wave and the wave-
function of the electron are solutions of a waveatmpn describing a delocalized object. The
particular aspect being described, however, isedfit. In the classical casp(xt) is the

amplitude of the signal picked up by a microphooeated at this position. In the quantum

mechanical case, the squared amplitt|zﬂ(ax,t)|2at a certain position gives the probability of
finding the electron at this position.
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Both of the differential equations have the Laplaperator on the right side (second derivatives
with respect to space). However, with respecine tthey are different. In the classical case, we
have a second derivative with respect to time thats to wave-solutions. In the quantum
mechanical case, the combination of the complexbaum and a first-order derivative with
respect to time leads to wave solutions. But tlvesee-solutions are complex due to this special
form. It is also the first-order time-derivativieat results in a parabolic dispersiB(k) of the
electron. In contrast, the sound wave has a limkspersion due to the second-order time-
derivative. Schrédinger’s equation includes, iniidd, a potentiaV (r) that can not be simulated

by the sound wave experiment. However, the refiecit a hard wall can be used to function as
an analog to an infinitely high potential barriem later experiments, we will use irises as an
analog for finite potential barriers with certa@flection and transmission probability.

In both cases, eigenstates are found in a well.céxain wavelengths, standing waves are found,
and in both cases the wavevector of these wavgises byk = n 77/L. However, the position of
the nodes is different, because the boundary donditare not the same. In the quantum
mechanical case, the wave function must be zetiweaboundary. In the case of sound waves, we
have physical quantities that we use to describevdive. One is the pressure and the other is the
air-velocity. Like the quantum mechanical wavedtion, the velocity has a node at the boundary,
but the velocity is a vector. The pressure hascallmaximum at the boundary and is a scalar
quantity. As an analog to tisealar quantum mechanical wave function, we thereforéeprine
scalar pressure, even though it has an opposite bourtergition. A scalar “velocity potential”
could also be used to describe the wave, but & doé help much, since its nodes are at the same
position as those for the pressure. You shoulaviere of this difference.

To each eigenstate, an eigenfrequengyis assigned. In quantum mechanics, it is founthen
time dependent phase fact@* . In the case of sound waves, the eigenfrequenejniply the
frequency of the sound itsell=277f. In quantum mechanics, the frequency is dire@lgted to

an energy by the equatiof =7« . This has no direct analog in the sound experisaeiVhen
working with sound, we look at the frequency of 8wand and not at an energy. We therefore
consider energy-levels in quantum mechanics agylsalogous to the “frequency-levels” in the
sound experiments that are given by the sharp aesenfrequencies. The dispersi&(k),
discussed in quantum mechanics, can be comparbduiid) in classical mechanics.

Another little difference is related to the abselphase. The microphone can measure the phase
of the sound wave, but in quantum mechanics thelatesphase of a state can not be measured.
Relative phases between two wavefunctions can lesuned in quantum mechanics and we can
measure the phase of an acoustic wave functionffatet locations and determine the relative
phase to compare with a quantum mechanical syst¥wou should be aware that the sound
experiments provide an experimentalist with morformation about the system than can be
extracted from an analogous quantum mechanicasyst
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1.2 Measure a spectrum in the tube using an osciioope

Objective:  In this experiment, the independent variablehis frequency provided by the
generator, and the dependent variable is the amdplitof the sound wave reaching the
microphone. First, we will examine the amplituddh®e sound-wave received at the microphone
as a function of the frequency of the sound. Thea,will determine how the spectrum (the
pattern) observed depends on the length of thedabducting the sound.

Setup:

With the tube, speaker and microphone arrangecetsd) connect the output of the sine wave
generator t@NE WAVE INPUT on the Controller and the wire from the speakesPEaKER OUPUT.
Connect the microphone on the experimental tul@¢ROPHONE INPUT.

Locate theFREQUENCY-TO-VOLTAGE CONVERTER module on the Controller and set the toggle switch
to oN.  With the oscilloscope in the xy-mode, connéetic-ouTPuT of the converter module®
Channel 1, the x-axis. The converter provides Hage proportional to the instantaneous
frequency. The calibration is 1 V per 1 kHz andah be used for frequencies up to 10 kHz (or,
with offsets, up to 20 kHz).

ConnectdbETECTOR OUTPUT to Channel 2, the y-axis of the oscilloscope. DHEECTOR OUTPUT
connection provides a dc signal that is proportidnathe amplitude of the sound wave at the
microphone.

You have now set up the oscilloscope to plot thelaude of the sound at the microphone as a
function of the frequency of the sound.

Set the image persistence time on the oscillostmpdinite.

Now, sweep the frequency by hand. As you changdréquency, the oscilloscope will plot a
spectrum with peaks.

You can use thec-orFrseT knob to center the image on the oscilloscope acree

Use theATTENUATOR dial on the Controller to keep the signal frommgpioff scale. (With an
attenuator, a higher reading on the dial gives allemsignal. Appendix 1 describes the function
of each part of the Controller)

Experiment:
Take spectra for different tube lengths and compam with the results you found in section one.
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1.3 Measure a spectrum with the computer and comparit to the spectrum found with the
oscilloscope.

Objective: This experiment uses a computer soand both to generate the sound wave and to
sweep its frequency. We will use the oscilloscap@bserve the actual sine wave signals both
going into the speaker and coming from the microgho Simultaneously, we will use the
computer to display a spectrum which shows the énag of the signal from the microphone as a
function of the frequency of the sound.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi€@legh & Aluminum Cylinders
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égsl'SpectrumSLC.exe” running

WARNING: The BNC-to-3.5-mm adapter cables are providea @snvenient way to couple
signals between the Controller and sound card.ottinfately, they could also provide a way
for excessive external voltage sources to damageuad card. Most sound cards are
somewhat protected against excessive inputsit lmithe user's responsibility to ensure tha
adapter cable voltages are kept BELOMWolts peak-to-peak

The maximum peak-to-peak value for optimum perfarogaof the Quantum Analogs system
depends on your sound card and can vary from 50@a@WN.

Setup:

Using the tube-pieces, make a tube with the enceptentaining the speaker on one end and the
end-piece with the microphone on the other.

Now, using connectors on the Controller, you wahd the sound card signal to both the speaker
and Channel 1 of the oscilloscope, and the microplsignal to both the microphone input of the
computer and to Channel 2 of the oscilloscope.

First, make sure that theATTENUATOR knob on the Controller is set at 10.0 (out of 1Qurns.

Let’'s start with the sound signal. Attach a BNGQitsy or “tee” to SINE WAVE INPUT on the
Controller. Using the adapter cable, connect thgpuwt of the sound card to one arm of the
splitter. With a BNC cable, convey the sound csighal from the splitter to Channel 1 of your
oscilloscope. Plug the lead from the speaker érydur experimental tube t8PEAKER OUTPUT ON
the Controller. The sound card signal is now gamboth the speaker and Channel 1.

The microphone signal will also be sent two différplaces. Connect the microphone on your
experimental tube t®CROPHONE INPUT on the Controller. Put a BNC splitter on the Colher
connector labeledc-MONITOR. From the splitter, use an adapter cable to sleednicrophone
signal to the microphone input on the computer dotard. Use a BNC cable to send the same
signal to Channel &f the oscilloscope to show the actual signal cgniitom the microphone.

The computer will plot the instantaneous frequegegerated by the sound card on the x-axis and
the amplitude of the microphone input signal onyfais.
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The next job is to adjust the magnitude of both thespeaker and microphone signals so that
you will have maximum signal while keeping the miasphone input to the computer from
saturating. Peak-to-peak signals to the microphone inputraage from 0.50 to 2.0 volts
depending upon your sound card.

Once the program, SpectrumSLC.exe., is running,cgouconfigure the computer. Go to the
menu at the top of the screen and choose Configimput Channel/Volume At this point,
chooselineln, if it is available; otherwise choos8&icrophone. On this screen, set the
microphone volume slider to the middle of its range

To set the speaker volume, use Amgplitude Output Sgnal on the lower left of the computer
screen. That slider should also be set to miduige.

The microphone signal coming from the apparatist passes through a built-in amplifier, and
then through theTTENUATOR, before reaching thec-MONITOR connector. The ten-turn knob on

the attenuatodecreases the incoming signal by a factor ranging from ze&rd00. For example,

a setting of 9.0 turns (out of the 10 turns posgilstands for an attenuation of 9/10 or 90%
attenuation of the signal. (A higher setting meassnaller signal.)

After taking an initial wide range spectrum, choasgection that includes the highest peak and a
smaller one next to it. Readjust the scan to cquadrthis portion. Using the option that allows
you to keep successive spectra visible, take Spacty, 2, 3, etc. with the attenuator knob set at
9.9,9.8,9.7, ... turns (out of ten). The meptieights of the peaks will tell you whether ot no
the system is behaving in a linear fashion. CQummito go lower on the 10-turn dial setting until
the computer program flashes ‘saturation’. You aléo have visual evidence of saturation — a
flat section on the tallest peak or a smaller “‘mgStspacing. (See Appendix 2 or 3 for details.)

Once you have reached saturation, drop back irtditlear range. Now you can operate with
confidence that the signals you see really are @tmmal to the amplitude of the sound wave
you are studying.

Experiment:

Now you can use the computer to collect an ovensgpectrum from about 100 to 10,000 Hz.
You can use coarse steps (~10 Hz) and a shortpanstep (~50 ms) for this investigation. As
the frequency is changing, watch the trace on sludloscope. How is the oscilloscope showing
the change in frequency? What is happening t@aihglitude of the signal? How is this related
to the trace being created on the computer?

Compare the spectrum recorded on the computertoesults you found using the oscilloscope
in the first experiment.
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Linewidth:
Lifetime of quantum mechanical states

In most cases eigenstates do not last foreveclabsical physics there is decay due to dissipation
of energy by friction. In quantum mechanics orflg ground state lasts forever. Excited states
with higher energy decay into the ground state,ctvhs the eigenstate of the system with the
lowest energy. These effects are not includechen differential equations. However, we can

introduce the decay easily into the wave functibpgeplacing the time dependent factors in the

wave functioncost) and €', respectively, with a factor that is oscillatingdaexponentially

damped. With a damping constanit results in e " cos@t )ande ™", respectively.

In the case of finite lifetime, the wave functioanoiot be assigned to a single angular frequency
) but contains a spectrum of angular frequendiest we can determine by Fourier-

transformation. Let’s write the wave function igeneral way as
W(x,t) = f(x) et (1.16)

with an arbitrary spatial dependerfdg). For t<0, the wave function is assumed to be zero. By
performing a Fourier-transformation we obtain thecalled spectral functiody(«), that describes
the amplitude as function of angular frequentyhe classical case. In the quantum mechanical

case,|A(a))|2 is the probability of measuring the particle tovédéhe energyE =%a. Performing
the Fourier-transformation

1 < s i
Aw) =—— e ' dt 1.17
(@=7 j (1.17)
we obtain the spectral function
_1
Alw) =—2 1.18
() A+i(w - w) (1-18)
The absolute squared is a so-called Lorentzian peak
1
A =—22 1.19
| ( )| (%_a))2+A2 ( )

The width of the peak is directly related to tHetimet of the eigenstate. The lifetime denotes the
time after that the amplitude of the state has beenced to 1/e. From the half width at half
maximum of the peak the damping constantan be read directly. In quantum mechanics the
width in energy of a metastable state lis= 74

7

r=" (1.20)
T

The spectral functioA(«) is complex, which can be written as the abso|IA(e))| multiplied by a

complex phase factorA(a)):|A(a))|e“". Both amplitude and phase depend on the angular
frequency.
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Linewidth of the resonances in the sound experiment

In the sound experiments the situation is a lititedifferent, but the result looks almost the same
as in guantum mechanics. The sound wave close éiganstate can be seen as a damped, driven
harmonic oscillator described by the linear différal equation

d?p
dt?
This driving force is represented by the speakat th driving the standing sound wave. The

resonance frequency under consideration has thaelaanfyequencyy,. The solution of this

differential equation is a superposition of a tianssolution that is a solution of the homogenous
differential equation (first part of eqn. 1.22)daa steady-state solution (second part of eqn.)1.22
that is of interest here.

p(t) = Ae” cos@t + @,) + Acost + @) (1.22)
For our experiment, we can assume that the transuation has already damped out, so that we
are detecting only the steady state amplitude,fAh® sound wave. This amplitude depends on

the frequencyw of the driving force compared to the eigen-frequyemy of the oscillator. It is
given by

+ y +a)0p K cosft) (1.22)

- K (1.23)
J(6f - ) + 2y’
The phase between driving force and oscillatingsagiiven by
¢= arctanﬂ . (1.24)

of —of
Using the complex exponential functighe result can be written even more simply.
For this purpose we write the differential equatiothe form

% dp +ap= K (1.25)
and the steady-state solution as
p.(t) = AP (1.26)
The complex amplitudA as function of angular frequeneycan then be written as
i
A=z _:}i v (1.27)
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If only single resonance existed in the tube, tieephone would measure the amplitude

| ke?
A | - +2iyw

K
V(@ ~a?) + 2pe)”
In reality, however, there are a number of resoeganall of which are simultaneously excited.

The superposition is coherent because there isxead fphase-relation between the different
resonances.

(1.28)

The entire spectrum is therefore a superpositioallodfomplex amplitudes. That can be written
as:

|Al=| K,e” + K,e”™ + Kye® +
-~ +2Ayw - +2iy,w - +2y,w
1 2 2 3

K, &? |

|A(w)| = ;af_a)z+2i%w| (1.29)

In this notation, we are using four fitting parasrstto model each peak in the spectrum. They
areK,, w,y,¢,. In our simplified theoretical model we descrthe resonances in the tube by

independent damped, driven oscillators with paramdaken from the experiment. The coupling
of the speaker to the standing wave depends on geprand can be different for different
resonances, which results in differ&nts. The friction depends on a different parametdrich

results in differenty;’s. Finally, the phase between driving force arstiltating air is also
different for different resonances. Therefore,gthaseg, is also fitted as a parameter.

In a spectrum measured with an oscilloscope ordmputer,|A(w)| is plotted. The connector
markedDbc-oUTPUT on the Quantum Analogs Controller gives a voltageportional t¢A(a))|.
The linewidth of an acoustic resonance is smallganed to its frequencyy << w,. In this case
we can make the approximation
W+w=2w = - =20(w,-w)
and rewrite the absolute value of Amplitude as
Ke?

N~ Gy i)
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Sincewcan be assumed to be almost constant in the fnegueterval across the peak (within the
approximatiory << w),

1

Aw)—————
y+i(w-aw,)

The resonance peak(w), in a classical driven, damped oscillator has sheme shape as the
spectral function of quantum mechanical eigenstatte finite lifetime (eqn. 1.18).

In the following figure the two line-shapes

2w
Alw)| = o
A V(& - a?)? + (2yw)’

and
1

Al =
A Jiwy-w)? + 2

are plotted for comparison with the paramedgr= 271000 aHd y =A =271[20Hz. The full

width at half maximum of the peaksfi& = 231 andAf = é)l , respectively.
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Objective: In this experiment, we will use the computer toorelca spectrum of eight or fewer
peaks. We will then use the software program piedito demonstrate that the data generated
by Quantum Analogs can be fit to the theoreticatiel®.

Setup:

Create a short tube and set the computer parantetpreduce a spectrum with eight or fewer
peaks. One possible configuration would be a 1850 long tube, a sweep from 5000 Hz to
14000 Hz, 5 Hz steps, and 50 ms per step.

Experiment:

Generate a spectrum of eight or fewer peaks. Afesrerating your spectrum, open the fitting
window in the software via the sequence: Menu ndbdivs > Fit. In the fitting window that
opens, your first task is to give the software taoenitial estimates for the location and heigfit

up to eight resonances. In the ‘Peak Number’ nagribe upper left of the window, select Peak 1.
Now, point your mouse to the top of the lowest firerocy peak, and left-click your mouse. You
will see (in blue) the theoretical resonance witd tenter and height matching the peak you have
selected. The blue curve also has a default alueridth. If you have a mouse wheel, you may
use the wheel to adjust the width estimate to mgtehr data. Perfection is not required in these
initial estimates.

When you are done with Peak 1, right-click your se@and the selection in the Peak Number
menu will change to Peak 2. Now locate and lettkcthe second peak. Repeat this initial-
estimate procedure for it and each subsequent peak.

After using the mouse to put in the initial estiggafor all of the peaks, you will see a blue curve
showing a first approximation of the theoreticaldab Now click the button for 'Start Fit', and
the software will use your estimates to optimize thatch between the data curve (red) and the
theoretical model (blue), by adjusting the fittipgrameters. If one of the model's peaks 'escapes
from the data of the spectrum during this fittingbgedure, you can stop the fit and readjust
manually. After you've reset that peak's estimag@meters, just restart the automatic fit.

When the automatic fitting is done, you can useRbak Number menu (at the window's upper
left) to select any peak. The software then shihesvalues of the parameters for that peak that
best-fit your data.

You can now check the repeatability of your data. do this, first record the parameters for one
of your peaks. Next, acquire a fresh set of d&apeat the fitting procedure, and look again for
the center location of your chosen peak. (Prefmabe very impressed!)

You can save the fitting parameters that you geeéras an ASCII file. The best-fit theoretical
function can be saved either as a data file oneage file.
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2. Modeling a hydrogen atom with a spherical resonator

Background:

The hydrogen atom, with a single electron in thell@mb potential of the nucleus, is an ideal
object for studying the basic principles of atompitysics. As the simplest of all atoms, without
any electron correlations, it can be solved anzdj.

The spherical symmetry of the three-dimensionalblerm makes it possible to separate the
angular and radial variables for the solution diif8dinger’s equation. The acoustic analog uses a
spherical resonator that allows a separation aalbas for the solution of the Helmholtz equation
in the same way as is done for the hydrogen atoewW see that the eigenfunctions with respect

to the angular variables — the spherical harmon¢d,¢) — are exactly the same for both
problems. The radial eigenfunctions, however, #ferent.

The three-dimensional Schrddinger equation

R et
Eyg(r) = —%Al//(f) —Tlﬂ(r) (2.1)

expressed in polar coordinates

2 2 2 2 2
Ew: h zi(rZG_w].p —T/Zl . i(s|nea_wj+ zh — 0 (/:_e_w
2mr © or or 2mr “sing 06 060 ) 2mr°sin“@d¢ r
can be separated in two differential equations tighansatz
W(r.6,0)=Y"(6.9) xi(r). (2.2)

The spherical harmonics are solutions of the diffigal equation

1 90(. .0 1 9% |, _ m
—[wﬁ(smeﬁ}sngﬁ}q 6,9)=1(1+)Y"(6,9) (2.3)

and yx, (r ) is a solution of the so called radial equation

P ).
2mr or? X 2mr?

xm—%ﬂn=avy (2.4)

In the case of the spherical acoustic resonatdramsform eqn. 1.4

°p_ 1
=~ A 2.5
o oK p (2.5)

with the ansatzp(r,t) = p(') cost) into the time independent Helmholtz equation
~ 1 ~
W p(F) = ——20p(F), (2.6)
PK

Usingc as the speed of sound, equation 2.6 can be watten

—% p(F) = &p(F) (2.7)
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The Helmholtz equation in polar coordinates is gitg

2
_ii(rzﬁj_ 1 0 (Singﬂj_ 1 4 P —ﬁ

r2ar\ or) r2sinfaé 06) r?sin?89¢> c’ P

It separates into a radial-functif(n) and the spherical harmoni¥s" (6, @) .

p(r.6,¢) =Y"(6,9) f(r) (2.8)

With this ansatz the Helmholtz equation is sepdratene differential equation for the spherical
harmonics

1 o0/ . 0 1 02
- ——|sin— |+ ————¥"(8,9) =11 +1) Y"(8, 2.9
[siné’aé’( aej sin26’6¢2}' (6.0) =10+ ¥70.9) (2:9)
and another for the radial function
0°f 2af 1(1+]) o’
- -——+ f(r)=—f(r 2.10
arZ r ar r.2 ( ) CZ ( ) ( )

You see immediately that eqn. 2.3 and eqgn. 2.9 exctly the same and have the same
eigenfunctions and eigenvalues for the quantum musib(angular momentum or azimuthal
guantum number) ama (magnetic quantum number). The radial equatioesidferent, which, of
course, results in different solutions. The Coulgpotential only appears in the radial equation
(egn. 2.4). Therefore, it does not affect the gphkeharmonics. The eigenvalues of the radial
equations are numerated by the quantum numbéadial quantum number).

The energy levelE,, of the hydrogen atom are the eigenvalues of thelr@aquation (2.4) and

the eigenfrequencies of the spherical acoustionasow), are eigenvalues of the radial equation

(2.10). Since the two differential equations araliéferent form, the resonance frequencies in the
resonator can not be compared quantitatively with énergy levels of the hydrogen atom.
However, the resonances can be classified withséime quantum numbers (radial quantum
number),| (azimuthal quantum number) anmd (magnetic quantum number). The quantum
numbers are integers and

n'=0 >0 -l <m<l| (2.11)

In the non-relativistic description of the hydrogom many energy levels are degenerate, due to
the special form of the Coulomb potential. Thergigs can be written in the form

) me?
Ey=d— | =———. (2.12)
hc) 2(1+1+n)

All levels with the same value fdt +1+n') are degenerate. Therefpeenew quantum number is
introduced that is called the “principal quantunmoer”n. It is given by

n=I+1+n' (2.13)
For a given principal quantum numbethe azimuthal quantum numbdezan take the values
O<l<n-1 (2.14)

even though it runs to infinity for a given radgplantum number.
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In the diagrams of the hydrogen atom spectrum shmsiow, the energy levels are labeled in two
different ways. In the left figure they are lalzkle the ordinary manner, using the principal
quantum number. The right figure shows the endeggls labeled using the radial quantum
number.

(4,0)=4s (4.1)=4p (4,2)=4d (4,3)=4f (3.0)=4s (2,1)=4p (1,2)=4d (0,3)=4f
(3.0)=3s (3.1)=3p (3.2)=3d (2,0)=3s (1,1)=3p (0,2)=3d

(2,0)=2s (2,1)=2p (1,0)=2s (0,1)=2p

(1.0)=1s (0,0)=1s

Energy levels of the hydrogen atom Energy levels of the hydrogen atom
labeled with the principal quantum labeled with the radial quantum
number in the ordinary wagn,l) . number(n',1).

The degeneracy of levels with the same principaihtum number does not have an analog in the
spherical acoustic resonator, since the radialtemjues different.

In the spherically symmetric case, the eigenvafaeslifferent magnetic quantum numbensare
degenerate for any form of the radial equationis T true for both the hydrogen atom and the
spherical acoustic resonator. In general, theneiglees numbered by the quantum numl{ark)

or by (n',1) are (2 +1)-fold degenerate. This degeneracy is lifted mtiee spherical symmetry is
broken.

Now let's do some experiments that allow us torse@y of these effects. First, we will identify
the resonances by their angular dependence.
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21 Measureresonancesin the spherical resonator and deter mine their quantum
numbers

Objective: Determine the resonance frequencies for the gatheesonator and gather data to
determine their angular-momentum quantum numbers.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Hpheses, Accessories
Sine wave generator capable of producing 1-50 kiz avpeak-to-peak voltage of 0.50 V
Two-Channel Oscilloscope

Setup:

Assemble two of the hemispheres so that the speakethe lower
hemisphere and a microphone is in the upper hemisph{Looking
carefully at the photo, you will see the speakerevdt the lower
right.) Adjust the position of the upper hemisgheo thatt =180°

on the scale is at the reference mark. In thistipos the speaker
and the upper microphone are at opposite endsl@naeter. (The
microphones will be one above the other.)

Attach a BNC splitter of “tee”"t@NE WAVE INPUT on the Controller
Connect the output of your sine wave generatomi® side of the
splitter. Use a BNC cable to send the sound sigm@hannel 1 of ‘
the oscilloscope. Plug the lead from the speakerthe lower ~ Atom Analog
hemisphere tGPEAKER OUTPUT on the Controller. The same sine Microphonesareimbedded

der BNC tors.
wave now goes to both the speaker and Channel 1. ggeg{(er ot lomer fir;ht

Use a BNC cable to connect the microphone outpum ftheupper hemisphere toCROPHONE
INPUT on the Controller Conneciac MONITOR on the Controller to Channel 2 of the oscillosctipe
display the sound signal received by the microphofmggger the oscilloscope on Channel 1.

Use theaTTENUATOR dial on the Controller to keep the signal on Clerihfrom going off scale.
Remember, with an attenuator, a higher readingherdtal gives a smaller signal. (Appendix 1
describes the function of each part of the Corergll

Experiment:
Start at a low frequency and sweep the frequendyp apout 8 kHz (8,000 Hz).

Write down all the resonance frequencies you olesei¥f you listen carefully, you may actually
hear some of them.)
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Objective:

Observe, qualitatively, the way the amplitude of tbsonance signal depends on the location of
the microphone.

Experiment:

We will now gather data that will allow us to inféhe angular quantum numbers of the
resonances. Go to the second resonance, at ab@QitH&. Fine-tune the frequency until it is as
close as possible to the peak of the resonancit ti#hcurves on the oscilloscope horizontally so
that a maximum of the microphone signal (Channdak2pcated in the center of the image and
marked by a vertical line. Now, watching the sigma the oscilloscope, slowly rotate the upper
hemisphere, with respect to the lower one, foom 180° toa = 0°.

Questions:

How did the amplitude change? Did the signal ckaitgysign? Determine the angle where the
amplitude is zero. At which angles is the signalximal? Do both extrema have the same
amplitude?

Note: Do not warm the aluminum parts too much by tomgtthem with your hands. The speed
of sound is temperature-dependent, and, in congegquéhe resonance frequency would shift with
temperature. While analyzing the angular depergletiee chosen generator frequency should
remain on top of the resonance.

Analyze the data:

The anglen read on the scale is not a suitable angle for eoisn with theory. Notice that the
scale readingq, running from 0 — 180°, tells you the rotationtb&é upper hemisphere about a
vertical axis. The symmetry axis for this systdmawever, is determined by the speaker. The
angle of interest, therefore, is measured usingspeaker location as zero. To analyze the data,
you must first usex to calculate the polar anglé, It is this angle which we use for polar
coordinates. To clarify how this works try theléoling.

Assemble the sphere with the upper hemi-
sphere set so that = 180°. Temporarily
open the resonator and notice that at t
setting the speaker and the upp
microphone are 180 degrees apart in spa
6 = 180°. Reassemble the spheres, tyg
the upper sphere te = 0°, and open the
resonator again. You will see that t
spatial separation of the speaker a

microphone, the polar angle of interest, is Atom Analog -
o Hp— 00° p g Speaker isat lower right  Sample Sound Amplitude Pattern

speaker
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Both the speaker and microphone are at an anghbdfwith respect to the horizontal plane
between the hemispheres. By rotating the hemisgheith respect to each other, the argéan

be changed fron® = 90° (ata = 0°) to @ = 180° (ata = 180°). Intermediate angles can be
calculated using the formula

6 = arccosf cosa - 3). (2.15)

You have measured thigdependence of the spherical harmonic func¥gi{é, ¢) with | = 2 and

m= 0. Now we need to learn more about the sphehn@ahonics to compare the experiment with
theory.

Derivation of equation 2.15

Assume that the speaker is located in the x-z-pdangkethe vertical axis is the z-axis. The positjon
of the speaker in a sphere with unit-radius is mibg the vectors = (/3 ,O,—\/%).

We want to calculate the angle between speakemégrdphone, which is the angbe
To calculated we use rotary matrices. In the first step, watethe vectos from the position of]
the speaker (vecta@) by 90 degrees around the y-axis arriving\g 0, \/%).

In the second step, we rotate by the angéound the z axis. Lets call the resulting vecior,
the position of the microphone.

From the scalar-producfi(3 = |3 cosf = cosd, we get the angle.
First rotation:
—sin9e° 1 1
cos90° 0 -sin90 \/; \/z 7 A
0 1 0 0O (=] 0
sing® 0 cos90 | (- /1| |3

Second rotation:

cosa -sina 0| |3 \/%cosa >
sina cosa 0| 0 |=|.4sina X
0 0 1]|3 1

scalar-product:

\/% cosa 3

mis = \/%sina 0 |=tcosa-1

2 2
ViO[E

with
mI[S = cosd
we get the result:

bpoo =)
@ = arccos—cosa ——
2 2
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Spherical Har monics and L egendr e Polynomials:
The spherical harmonicg™(8,¢) can be written as

Y"(6,¢) O R™(cosf) €™ (2.16)

in terms of the associated Legendre polynomRls  For these experiments, we can restrict

ourselves to the case = 0, because our speaker creates waves with cidaldsymmetry about
the speaker axis. Fon = 0 the spherical harmonics do not havg-dependence and the wave
function has the same amplitude for all azimutmglles,¢ . The dependence on the polar argjle
is given by the Legendre polynomials

Y°(6,¢) O R°(cost) (2.17)
The first nine Legendre polynomials are shown below

P,(cosd) =1
P,(cosd) = cosd

P,(cosh) = % (3cos 8-1)

P,(cosf) = % (5cos’ 8 —-3cosh)

P,(cosh) = :—é (35cos' @ - 30cos 4+ 3)

P.(cosf) = :—é (63cos’ @ - 70cos’ 6 +15co0sb)

P,(cosf) = 1_16 (231cos’ 6 - 315co0s' 8 +105cos 6 - 5)

P,(cosh) = 1_16 (429cos’ 8 - 693cos 8+ 315cos’ 8 - 35c0sH)

P,(cosd) = 1 (6435c0¢ 6 —12012cos 6 +6930cos’ @ —1260cos’ 4 + 35)
8 12€
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In Fig. 2.1 and 2.2 the first six Legendre polynalsiare plotted. The number of nodes in each
Legendre polynomial is equal to the azimuthal quamnbumbet.
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Fig. 2.1: Legendre Polynomials
P (cosf) = cosf inred,

P,(cosd) =1 (3cos’ 8 -1) in blue and
P,(cosf) =1 (5cos 8-3cosb) in green.

Fig. 2.2: Legendre Polynomials
P,(cosd) =1 (35cos' @ —30cos & +3) in red,

P.(cosd) =1 (63cos’ & —-70cos’ 8 +15c0sb) in blue
P.(cosd) =L (231cos & -315cos' §+105c0s 6 -5)

in gree

In the following table, the nodes of the Legendolypomials are listedBe awarethat these are
the polar angles 8 and not the angles you read on the scale.

Po

Py 90°

P, 54.74° | 125.26¢

Ps 39.23° 90° 140.77

P 30.56° 70.12°| 109.887 149.44°

Ps 25.02° 57.42° 90° 122.58° 154.98°

Ps 21.18° | 48.61°| 76.199 103.81° 131.39° 158.82°

P, 18.36° | 42.14°| 66.06° 90° 113.94° 137.86° 161.p4°

Ps 16.20° 37.19°| 58.30°9 79.437 100.57° 121.70° 142/8163.80°

Table 2.1: Nodes of the first eight Legendre polynomialsegivn the polar angle@
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Questions:

Now you can identify the angular quantum nunlbafrthe second resonance you have measured.
As you variech from 180° to 0°, what range 6fdid you cover?

How many nodes did you discover in the range yoeiced?

Based on your observations, to whaalue does the resonance you examined correspond?

Does thed angle measurement of the node you have measured agh the angle predicted by
the theory?

Do the relative magnitudes of the extrema fit t tieory?

Note about the magnetic quantum number:

The resonance that you have analyzed is1(2fold degenerate with respect to the magnetic
guantum numbem. However, in this experiment we observe almostusively them = O state.
The standing sound wave in the sphere is drivethéyocal speaker. The speaker defines the z-
axis of the problem. It emits a wave traveling mordess back and forth along the z-axis and
having cylindrical symmetry around that axis. Thygnmetry of the standing wave is described
by them = 0O state. States with other# O describe waves that move on an orbit insidesgiere.
These types of waves are much less effectivelyedriyy our speaker located on the z-axis, since
these states have nodegJat 0° andd= 180°.

Objective: We will trace out the angular dependence of thelidunde of the wave function.
Additional Apparatus. dc voltmeter

Setup:

As in the first part of this experiment, attach IA@splitter tosSINE WAVE INPUT on the Controller.
Connect the output of your sine wave generatomi side of the splitter. Use a BNC cable to
send the sound signal to Channel 1 of the oscolesc Plug the lead from the speaker on the
lower hemisphere tePEAKER OUTPUT on the Controller. The same sine wave now goéstio the
speaker and Channel 1.

Use a BNC cable to connect the microphone outpuh fthe upper hemisphere MdCROPHONE
INPUT. Connectac MONITOR on the Controller to Channel 2 of the oscilloscopedisplay the
sound signal received by the microphone. Trigherascilloscope on Channel 1.

This time put the upper hemisphere in the positior 0° on the scale. In this position the
microphone is directly above the speaker which meagled will be 90°.

To observe the amplitude of the sound signal abhtleeophone, connect a voltmeterterECTOR-
OUTPUT. You should also observe the sound signal itsgl€onnecting thec-MONITOR on the
Controller with Channel 2 of the oscilloscope. Beg the oscilloscope to Channel 1.
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Experiment:

For a couple of major resonances, measure the taihplas function of the angte You can read
the absolute value of the amplitude on the voltmated use the oscilloscope to determine the
sign.

Record the nodes (angle at which the amplituderig)Zor the same resonances.

Analyze the data:

Plot your data as function of the polar angkend fit the data with the Legendre polynomial ilsat
the best match. Do this for all the resonanceshgaue measured.

Compare the nodes you have measured with the mdke corresponding Legendre polynomial
given in table 2.1.

Note:

Some of the resonances are very close to each sthidnat the peaks are overlapping. This will
result in a superposition of two wavefunctions wdifferent quantum numbers. In this case, the
angular dependence you have measured does notditsingle Legendre polynomial. We will
analyze these cases in more detail by taking specth the computer.
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2.2  Measure spectra and wavefunctionsin the spherical resonator with the computer

Objective: In this experiment, you will use a computer souaddcboth to generate the sound
wave and to sweep its frequency. You will usedkeilloscope to observe the actual sine wave
signals both going into the speaker and coming ftoenxmicrophone. Simultaneously, you will
use the computer to display a spectrum which shthesamplitude of the signal from the
microphone as a function of the frequency of thensio

Equipment Required:

TeachSpin Quantum Analog System: Controller, Hehesps, Accessories
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égml'SpectrumSLC.exe” running

WARNING: The BNC-to-3.5-mm adapter cables are provided esnvenient way to couple
signals between the Controller and sound card. ottiniately, they could also provide a way
for excessive external voltage sources to damageiad card. Most sound cards are somewhat
protected against excessive inputs, bus the user's responsibility to ensure that adap
cable voltages are kept BELOWVolts peak-to-peak

The maximum peak-to-peak value for optimum perforoeaof the Quantum Analogs system
depends on your sound card and can vary from 50@a@WV.

Setup:

Now, using connectors on the Controller, you walhd the sound card signal to both the speaker
and Channel 1 of the oscilloscope, and the microptsagnal to both the microphone input of the
computer and to Channel 2 of the oscilloscope.

First, make surethat the ATTENUATOR knob on the Controller isset at 10 (out of 10) turns.

Let’s start with the sound signal. Attach a BN@tsgy or “tee” toSINE WAVE INPUT On the
Controller. Using the adapter cable, connect thtput of the sound card to one arm of the
splitter. With a BNC cable, convey the sound cagmhal from the splitter to Channel 1 of your
oscilloscope. Plug the lead from the speaker erlder hemisphere ®PEAKER OUTPUT On the
Controller. The sound card signal is now goinpath the speaker and Channel 1.

The microphone signal will also be sent two différglaces. Connect the microphone on the
upper hemisphere 10ICROPHONE INPUT On the Controller. Put a BNC splitter on the Colher
connector labeledc-moNITOR. From the splitter, use an adapter cable to semdiicrophone
signal to the microphone input on the computer dazard. Use a BNC cable to send the same
signal to Channel @f the oscilloscope to show the actual signal cgnfiiam the microphone.

The computer will plot the instantaneous frequegeyerated by the sound card on the x-axis and
the amplitude of the microphone input signal onytreis.
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Thenext job isto adjust the magnitude of both the speaker and microphone signals so that
you will have maximum signal while keeping the microphone input to the computer from
saturating. Peak-to-peak signals to the microphone input reenge from 0.50 to 2.0 volts
depending upon your sound card.

Once the program, SpectrumSLC.exe., is running, gau configure the computer. Go to the
menu at the top of the screen and choose Configurgut Channel/Volume At this point,

chooselLine In, if it is available; otherwise chooddicrophone. On this screen, set the
microphone volume slider to the middle of its range

To set the speaker volume, use Argplitude Output Sgnal on the lower left of the computer
screen. That slider should also be set to miduige.

The microphone signal coming from the apparatist passes through a built-in amplifier, and
then through theTTENUATOR, before reaching thec-MONITOR connector. The ten-turn knob on

the attenuatodecreases the incoming signal by a factor ranging from ze&rd00. For example,

a setting of 9.0 turns (out of the 10 turns posgilstands for an attenuation of 9/10 or 90%
attenuation of the signal. (A higher setting meassnaller signal.)

After taking an initial wide range spectrum, choasgection that includes the highest peak and a
smaller one next to it. Readjust the scan to cquadrthis portion. Using the option that allows
you to keep successive spectra visible, take Specty, 2, 3, etc. with the attenuator knob set at
9.9,9.8,9.7, ...turns (out of ten). The mesheights of the peaks will tell you whether ot n
the system is behaving in a linear fashion. CQummito go lower on the 10-turn dial setting until
the computer program flashes ‘saturation’. You al$o have visual evidence of saturation — a
flat section on the tallest peak or a smaller “‘mgStspacing. (See Appendix 2 or 3 for details.)

Once you have reached saturation, drop back irtditlear range. Now you can operate with
confidence that the signals you see really are @tmmal to the amplitude of the sound wave
you are studying.

Experiment:
Set the hemispheres so that the scale angld80°.

Start the program SpectrumSLC.exe and measureamiew spectrum. You can use coarse
steps such as 10 Hz and a short time per stepasust ms.

Change the angle between the upper and the lowaspkere several times and observe the how
the spectrum changes. Be sure to look at thergmedora = 0°.

Question: What changes do you notice?

Experiment:

Go back tax = 0° and look in more detail at the peak near 3890 Actually, there are two peaks
close to each other. Take a spectrum that measlanwsenough and with sufficiently small steps
to show the details of these two peaks. Also, sgertra for this range at= 20° andx = 40°.

Question: What do you notice?
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Objective: Create polar plots for a series of resonances sadhe plots to identify the angular
momentum number and spherical harmonic functiosash resonance.

Experiment:

Now we will measure the wavefunctions of the dif@r resonances and visualize them by a
polar plot of the amplitud&(8). The computer calculates the polar argfeom the angler and

it plots the absolute value of the amplitude asfiom of &in a polar plot. This diagram makes it
easy to identify the angular quantum number andgpierical harmonic function.

Take a spectrum with = 180° from 2000 Hz to 7000 Hz sufficiently slowlyf you click with

the left mouse button on a peak, the output freques adjusted to the value at which you
clicked. Look at the oscilloscope and convince gelirthat you are at a resonance. In the
computer menu, go to “Windows” > “Measure Wave Rianc.

Adjust the hemispheres = 0°, and measure the amplitude in steps of 1DRe program
converts the angle automatically to the polar angiand plots the absolute of the amplitude in
a polar plot. Use the function “complete by symyietio complete the figure.

Create polar-plots for the prominent peaks andtifiethe quantum numbers.

Analyze data:

Compare the polar plots you have generated withrgabts of the Legendre polynomials. Some
of them are given below, the others you can vigeahith the program PlotYIm.exe.

In case of overlapping peaks, you will find diséattfigures, since there are contributions to the
wave functions from two different eigenstates vdiffierent quantum numbers and symmetries.
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Fig. 2.3: Plots of the spherical harmonics:
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Fig. 2.4: Cut through the spherical harmonics with magngtiantum numbem = 0.

Yo (6,9) Y@, ) Y, (6.9 )

180°

Y, (6,9 ) Y, (6.9 ) Y5 (6,9

N—r

;6.9 ) (6.9 ) Y (6.9 )



Quantum Analogs
Chapter 3

Student Manual

Broken Symmetry in the
Spherical Resonator

and
Modeling a Molecule

Professor Rene Matzdorf
Universitaet Kassel



Stud. Man. Rev 2.0 12/09

3. Broken symmetry in the spherical resonator and
modeling a molecule

3.1 Lifting the degeneracy of states with differehmagnetic quantum numbers

Objective: In this series of experiments we will break the syetry of the spherical cavity and
study the resulting splitting of the resonance geakhis is analogous to the splitting of quantum
states.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Hpheses, Accessories
Computer with sound card installed and Quantum égesl'SpectrumSLC.exe” running
Two adapter cables (BNC - 3.5 mm plug)

Two-Channel Oscilloscope

WARNING: The BNC-to-3.5-mm adapter cables are providesl @nvenient way to couple
signals between the Controller and sound card.ottiniately, they could also provide a way
for excessive external voltage sources to damageiiad card.lt is the user's responsibility
to ensure that these adapter cables are NOT usead signals greater than 5 Voltpeak-to-
peak The maximum peak-to-peak value for optimum pentamce of the Quantum Analogs
system depends on your sound card and can vary§é@mV to 2 V.

Setup:
First, set the ATTENUATOR knob on the Controller at 10 (out of 10) turns.

Attach a BNC splitter or “tee” taiNE WAVE INPUT on the Controller. Using an adaptor cable,
connect the output of your computer sound carchtoside of the splitter. Use a BNC cable to
send the sound signal to Channel 1 of the oscolesc Plug the lead from the speaker on the
lower hemisphere tePEAKER OUTPUT on the Controller. The same sine wave now goéstio

the speaker and Channel 1.

Use a BNC cable to connect the microphone outjoum fhe upper hemisphereNOCROPHONE
INPUT. Connectac MONITOR on the Controller to Channel 2 of the oscillosctpélisplay the
sound signal received by the microphone. Trigherascilloscope on Channel 1.

Important Note: You will need to adjust the magnitude of both the geaker and
microphone signals to keep the microphone input tthe computer from saturating.
Refer to the Appendix 2, titled ‘Recognizing and Coecting Saturation’, for instructions.

Experiment:

Measure a spectrum in the spherical resonatordirgyuonly the lower three resonances.

Now put the 3 mm spacer ring between the uppet@mer hemisphere. Measure the spectrum
again. What do you observe?

Measure the spectrum again using the 6 mm spawgrand using both rings (9 mm).
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Analyze the data:

For thel = 1 resonance, you can now plot the frequencytisiglias function of spacer ring
thickness. What relationship do you find?

Background:
In a spherical resonator, each resonance with anggliantum numbet is (2+1)-fold
degenerate. These states with quantum numbersl, ..., 0, ...,I all have the same resonance

frequency. In the spherical resonator, we haven dbat the quantization axis (z-axis) is

determined by the position of the speaker. Thg w@vefunction that has a non-zero amplitude
on the z-axis is the one with = 0. This is the reason why the= 0 resonance is exited in the

sphere, exclusively.

When a spacer ring is introduced, the sphericalnsgtry is broken and the degeneracy of the
eigenstates is lifted. The quantization axis (&) now determined by the symmetry axis of
the resonator, which is the vertical axis. Theakpe which has 8=45° position with respect to
the symmetry axis, can now excite all states witteidnt quantum numbers. The sketches in
Figure 3.1 will help you to visualize the changeha direction of the quantization axis.

Fig. 3.1a:In the spherical resonator, the quantization axaeitermined by the position of
the speaker because it is the only part that breyaksnetry.

m=0 m=1 m=2

Fig. 3.1b: In the resonator elongated by spacer rings, thatigation axis is given by the
symmetry axis of the resonator. The degeneratlyeo$tates with differemh is lifted.
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The degeneracy is not lifted completely becausestates with positive and negative magnetic
guantum numbetm are still degenerate. States with positive arghtieem belong to waves in
the resonator circulating around the quantizatixis an right-handed and left-handed directions,
respectively. Both of these waves are excitedheyspeaker and have the same amplitude for
eachm. A superposition of such two waves results intanding wave with respect to the
azimuthal angle.

€™ +e'™ = 2cosMmg) (3.1)
In quantum chemistry, the superposition of the tpasiand negative versions of the magnetic

quantum numbem is used to form orbitals. Examples of the wayséhare labeled arey,py,
Oxz, Oy, for m=1 and g, dy.y2 for m=2.

In the sense of perturbation theory, the eigenfanstin broken symmetry are modified only
slightly compared to the eigenfunctions of the sjgaé symmetric case, as long as the
perturbation is small. We can therefore expecteaf@wtions very similar to the spherical
harmonics.

In the next experiments you can measure the azahdgpendence of the wavefunctions and
identify the magnetic quantum number of the peaks.

Experiment:

Using in turn the 3 mm, 6 mm and 9 mm spacer riaggquire a high-resolution spectrum of the
| = 1 resonance that resolves the two peaks atbbeitom =0 andn=+1.

Experiment:

Now we will measure the amplitude as function & #zimuthal anglg. We will then identify
which m belongs to each peak. Click the left mouse butnrtop of a peak to choose this
particular frequency. Then, open the window to soea the wavefunction > Windows >
Measure Wave Function). Check the box labeledédiidegeneracy” to tell the program that the
guantization axis is now vertical and that the amgbn the scale is equal to the azimuthal angle
@. In this mode the wavefunction is displayed iaegr.

Now you can measure the amplitude of the peak astibn of azimuthal angl¢. Repeat the
same measurement for the other peak. Use thelossope to determine how changing the
azimuth angle affects the sign of the microphogeai

Alternatively, you can measure the amplitude bydhaRead the amplitude from the oscilloscope
and the azimuthal angle= o from the scale.
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Analyze the data:

Identify the magnetic quantum number for each efghaks. Compare your results for the
amplitude as function agp with the theoretical predictiof¢) = cos(mg) .

Experiment:

Choose the frequency of the 1 andm = 0 resonance and measure the phase of the mareph
signal in the upper hemispherecat 180°. Then, connect the cable to the microphiotiee
lower hemisphere and measure the phase again.aRépesame experiment with thne= 1
resonance.

Experiment:

Measure a highly resolved spectrum with 3 mm, 6 ameh 9 mm spacer rings of the 2
resonance. It will split into three peaks with= 0, m=+1 andm = £2.

Experiment:

For each of the three peaks, measure the ampétsifienction of azimuthal angleand identify
the magnetic quantum numbers.

Experiment:

You may measure the splitting of states with highbut the increasing overlapping of several
peaks with different magnetic quantum number makeisientification ofim more and more
difficult.

One possible way to overcome this problem is tosuesaspectra for all anglélsand use the
peak fitting procedure to determine the peak amngdis. With this technique the overlapping of
the peaks becomes irrelevant.

Another possibility is to measure at certain anglésr which nodes in the wavefunction are
expected for particular magnetic quantum numb#rene of the peaks in the spectrum
disappears at the nodes of a certain magnetic goramamber, its number has been identified.
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3.2 Modeling a molecule
Objective: We will use a pair of spheres to create an anal@ghydrogen molecule.

Equipment needed:

TeachSpin Quantum Analogs System: Controller,Misgheres, irises

Computer with sound card installed and Quantum égesl'SpectrumSLC.exe” running
Two-Channel Oscilloscope

Two BNC - 3.5 mm plug adaptors

Setup:

Set a hemisphere with a hole on top of the hemigphéh the speaker. Through this hole, the
sound in the lower sphere will couple to a sec@ites. The strength of the coupling can be
adjusted by choice of the iris diameter. Choosedarthe irises and put it in place. (Iris
diameters are 5 mm, 10 mm 15 mm or 20 mm.) Setdhein the next hemisphere against the
iris. Use the hemisphere with the microphonedtmlete the upper sphere.

Put BNC splitters on both thseNe WAVE INPUT and theac-MONITOR of the Controller box. Using
a BNC to 3.5 mm jack converter, connect the ougfitihe computer’s sound card to one side of
the BNC splitter orsiNE WAVE INPUT. Connect the other side to Channel 1 of the loscibpe.
Connect the speaker cable from the lower hemispbereEAKER OUTPUT 0N the Controller. (The
sound card signal now goes to both the speakethendcope.)

Use a BNC cable to connect the microphone in thehtemisphere t®ICROPHONE INPUT. Use a
BNC cable to send the microphone signal from ode ef the splitter oac-MONITOR to Channel
2 of the oscilloscope. Use an adaptor cable tmeadt the other arm of the splitter st
MONITOR to the microphone line-in of your sound card.

Important Note: You will need to adjust the magnitude of both the geaker and
microphone signals to keep the microphone input tthe computer from saturating. Refer
to the Appendix titled ‘Recognizing and CorrectingSaturation’ for instructions.

Experiment:

Measure a spectrum in the “molecule” (two couplglesical resonators) of the resonance at
2300 Hz. Repeat the measurement with the differmsats. Compare with a measurement of this
peak in the “atom” (spherical resonator).

Open guestions:

Why does the peak split?

What is lifting the degeneracy?

Which quantum numbers can we use to label the padke molecule?
What do the molecular orbitals look like?

Let's answer these questions step by step.
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Experiment:

Measure a spectrum in the frequency range from @HD00 Hz first in the “atom” and then in
the “molecule”. Repeat the measurement with theratises.

Analyze the data: Make a plot of the resonance-frequency as funaifdns diameter.

Experiment:

Use one of the bigger irises and choose exactljrdugiency of the resonance. This can be done
by clicking the left mouse-button on the top of fleak. For the upper sphere, measure the phase
of the microphone signah¢-MoNITOR connected to Channel 2 of the oscilloscope) wapect

to thesNE WAVE INPUT signal (Channel 1 of the oscilloscope). Now canige microphone in

the lower sphere to the amplifier and repeat thasuement.

Question:
What is the phase difference between upper andrlspleere?

Experiment:

In the upper sphere, you can measure the azimdépaindence of amplitude to identify the
symmetry of the wavefunction.
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Background:

The two, coupled spherical resonators model a ghigtonolecule with two identical nuclei, a so-
called homonuclear diatomic molecule. The simpdastmple of such a molecule is"H Since

this molecule has only one single electron movinthe potential of two protons, it is an ideal
model system to discuss quantum mechanical effect®lecules. Many of the observations can
be transferred to molecules likg,HD,, N, and F.

Diatomic molecules have cylindrical symmetry wigispect to the axis going through the nuclei.
Due to this symmetry, we expect timais a good quantum number for the molecule, just ias

in the atom. The quantum numbehowever, cannot be used in molecules. In theeseh
perturbation theory, we expect a continuous chérage the atomic orbitals into the molecular
orbitals as function of the nuclear distance. Viletherefore label the molecular states
additionally by the atomic states from which theg derived in square brackets (for example:

loy[1s]).

For a small coupling of the two atoms (a largerimigclear distance), a superposition of atomic
orbitals is a fairly good approximation for the molilar orbitals. In general, the two atomic
orbitals can be superimposed in two different waysroduce a molecular orbital: with the same
sign or with different signs (phase shift 180°)ed@nding on the sign, the molecular orbital is
labeled with an index: g for the German word gera@®en, when the signs are the same and u
for the German word ungerade = odd, when the sigaslifferent.

The quantum number m is labeled with Greek letiers andd form=0,m= 1, andn= 2,
respectively. This corresponds to the way therlLlgtiters s, p, d are used in the atom for the
guantum numbdr Additionally, a principal quantum number is usediumber states with the
same symmetry but with increasing energy. Ingkisse, the states][1s] describes a molecular
orbital derived from two 1s atomic states that hia@en superimposed with different sign. It has
the magnetic quantum number m = 0 and is thedtede with this symmetry.

In the following figure, the molecular orbitals dexd from 1s states are plotted.

1s log 1s o

Fig. 3.2: Atomic 1s orbitals for two atoms with large distarand corresponding moleculg
orbitals calculated by superposition of 1s atonnimtals.
The color indicates the sign: red = positive, ugegative

—
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Molecular orbitals with a high probability of finay the electron between the two nuclei are
called bonding states, because they form a moleboled. States that have a node between the
nuclei, resulting in much lower electron densityEen the nuclei, are called anti-bonding. If
they are occupied by electrons, it weakens the Istretigth between two atoms. In the case
shown in Fig. 3.2, as in most cases, the even $tgf&s] is bonding and the odd statflLs] is
anti-bonding.

What is analogous, what is different?

In the acoustic analog, we have a situation vemylar to that of the real molecule. The two,
coupled spheres with same diameter corresponcttwih identical nuclei that are coupled
through the iris between them. The diameter ofriealetermines the coupling strength, which
corresponds to the internuclear distance of themneéecule. The symmetry is cylindrical, as it is
in the real molecule. Therefore, we can use theesguantum numbers and labeling of states as
in the real molecule. Due to different boundargditons, and the absence of a potential, the
eigenstates have a different order than in reaboubés. The eigenstates can be identified
experimentally by the “atomic” states from whicleyrare derived by the quantum numbeand

by the phase of the wave function in the two sphere

The eigenstate with a wave function that has neraadll (equal phase everywhere in space) has
the frequency zero in the acoustic case. Thisiestd Neuman’s boundary conditions that would
result, for this case, in a constant amplituderegpure everywhere. It cannot oscillate. In the
case of a molecule this state is thig[1s] state, the ground state of thg'#holecule. It cannot

be observed as resonance in the acoustic analog.

The state with lowest frequency in the acoustidans the b[1s]. Itis derived from 1s states
of the uncoupled “atoms”, even though the 1s staftéise uncoupled atoms cannot be observed
because, for both, the frequency is zero. Witheiasing coupling strength, the frequency of this
state increases, as you observed in the experihene. Since the state is odd, the phase of the
wave function has different sign in both spherésu observed this on the oscilloscope when
you measured the signal at the two different mibooe locations in the two spheres. The state
is ao-state since the amplitude is constant as funafah = a as you observed by rotating the
top hemisphere. For higher, the amplitude would show a dependence asvah)s(
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mtand d orbitals

From atomi orbitals, we derive molecular orbitals that camehmagnetic quantum numbers
=0 (0) andm=1 (m). Due to even and odd superposition, this resultsur different molecular
orbitals:ay , 0y, Ty, T,. In the case of atomic d-orbitals the numberesfvidd molecular orbitals

iS siX:0g, Oy, Ty, T, Og, &y. The following figure shows the molecular orlstalong with the
atomic orbitals they are derived from.

2p, (m=0) @, 2m=0) a,
folomg antibonding

Fig. 3.3a:Molecularo-orbitals derived from the atomic 2p-orbital.

2p(m=+1) fy Jm==1) -
antitating bonding

Fig. 3.3b: Moleculartrorbitals derived from the atomic 2p-orbital.
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Experiment
Let us now investigate the molecular orbitals dedlifrom the first atomic p-state that is observed
at about 2300 Hz.

Measure a resonance spectrum in the “atom” foreafee and then take a measurement in the
“molecule”. Use the 20 mm iris to produce the mawin splitting of the peaks.

Before measuring, press down firmly on top of the pf hemispheres. Good contact is
necessary to resolve peaks that are close to ¢laeh orou should scan slower than 50 ms/Hz.

Take spectra at different azimuthal angles.

Experiment

Now we want to identify the peaks in the spectraaddition to the peak at about 2450 Hz there
arethree peaks around 2300 Hz, even though it looks like a doyd#ak structure.

You can measure the phase difference between thex apd lower spheres for the different
peaks. Note that it is only in tlee= 180° position that the microphone positionseayeivalent

for the upper and lower hemisphere. For all otherou have to take the azimuthal dependence
into account.

In the case of strongly overlapping peaks, it fialilt to measure the phase directly. Here you
may observe how the amplitude develops as fundi@zimuth.
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4. Modeling a one-dimensional solid

There are two different ways to explain how a batrdcture in a periodic potential of a solid
develops. One approach starts with a free moviagtren in a constant potential that has a
parabolic dispersion relation E(k). Introducingipdic scattering centers with small reflection
probability results in the opening of band gapse ©ther approach is to start from an atom with
its discrete states. The next steps in this apgprase the splitting of the eigenstates states in a
two-atom molecule and further splitting in a chaitth n atoms. With the acoustic analog, you
can study both approaches experimentally. We dullthis in the next two sections. In later
sections, we will model the electronic structuremiore complex solids with superstructures
(Section 4.3) and defects (Section 4.4).

4.1 From a free electron to an electron in a periad potential

To model a free electron in one dimension, we aregupropagating sound in a tube. Since we
cannot work with infinitely long tubes, we restrmtirselves to a finite tube with hard walls on
both ends. This is actually the same setup we uns€thapter 1 to model the “particle in a box”.
Due to the finite length of the tube we get resonances with the frequericies
Cc

f, n2L 4.1)
(cis the speed of sound ands an integer number=1,2,...). The longer the tube, the denser
the resonances become. In an infinitely long tdhe resonances would be infinitely dense. In
solid-state physics, the so-called “density ofedats used in this context. Now let's do an
experiment.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi@tgh & Aluminum Cylinders, Irises
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égml'SpectrumSLC.exe” running

Setup:
First, set theATTENUATOR knob on the Controller at 10 (out of 10) turns

Using the tube-pieces, make a tube with the enceptentaining the speaker on one end and the
end-piece with the microphone on the othattach a BNC splitter or “tee” taINE WAVE INPUT

on the Controller. Using the adapter cable, contteetoutput of the sound card to one arm of
the splitter. With a BNC cable, convey the soundaagnal from the splitter to Channel 1 of
your oscilloscope. Plug the lead from the spea&k®r of your experimental tube 88EAKER
ouTPUT on the Controller. The sound card signal is nomg to both the speaker and Channel
1.

Connect the microphone on your experimental tub@®soPHONE INPUT on the Controller. Put

a BNC splitter on the Controller connector labekerdmoNITOR. From the splitter, use an
adapter cable to send the microphone signal tonibeophone input on the computer soundcard
and a BNC cable to send the same signal to Ch&wfethe oscilloscope. Channel 2 will show
the actual signal coming from the microphone.
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The computer plots the instantaneous frequencyrgeteby the sound card on the x-axis and
the amplitude of the microphone input signal onyttexis. Configure the computer so that
“Microphone” or “Line-In" is chosen as the input

You will need to adjust the magnitude of both the geaker and microphone signals to keep
the microphone input to the computer from saturatirg. (t is the user's responsibility to
ensure that the adapter cables are NOT used witinals greater than 5 Voltpeak-to-peak

Refer to the Appendix 2, titled ‘Recognizing and Corecting Saturation’, for instructions.

Experiment:

Measure the resonances in tubes of different lemgith analyze the distance between the
resonancedAf = f_,, — f as function of tube length. Convince yourselftttiee resonances

become more and more dense with increasing tulggher{As you use longer tubes, you will to
increase theTTENUATOR setting in order to get good data.)

The quantum numbers used in solid-state physicgliféfierent from those used in atomic and
molecular physics. In the measurements you haveemaall will have noticed that there are
equidistant resonances, which can be charactebgedumbering them in the order of their
frequency. From theory, we know that they belongstanding waves in the tube with
wavelength

2L

1=4E 4.2)
n

The wavelength can also be expressed by anothatityuealled “wave numberk (in three
dimensions it is the “wave-vecto®).

k=2"=p” (4.3)
AL

In the case of infinitely dense eigenstates, ihas useful to number the states by an integer

number. It is better to use the wave-numbéor wave-vectork in higher dimensions) to label
the eigenstates. In atomic physics we have charaetl the quantum mechanical system by
energieskE(n,I,m) as function of integer quantum numbers, in setate physics the quantum
mechanical system is characterized by the ené&(ly as function of wave number. This
relation is called “dispersion relation”. We wdlb this analogously in the acoustic experiments.

In the tube with finite length, we have discretgesistates, so that it is easy to determine the
wave number by the indexof the resonance using eqn. 4.3. This now allasvido measure the
dispersion relation for a sound wave in an empigtu

Experiment:

Measure the frequencies of the resonances in a d@édengthL = 600 mm and plot the
frequency as function of wave numlber

What do you notice?
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What is analogous, what is different?
Sound waves show a linear dispersion with a sleppgutional to sound velocity.

f(k) =k (4.4)
2T
Electrons, however, have a parabolic dispersion
hZ
E(k) = —Kk?. (4.5)
2m

Modifications of this so called free-electron li#lispersion are observed, when electrons have a
wavelength that is comparable to twice the latticestanta, of the solid. In this case, the
electrons are scattered effectively by the peritatitce.

In the acoustic analog, we introduce periodic sciat) centers separated by a distaacéhat is
comparable to half the wavelength of sound. Adspwavelength, at reasonable frequency,
(3.4 kHz) isA = 10cm &4 inch). Therefore, we can model a lattice byqudia scattering
centers at a separation distance of aboubcm €2 inch).

Experiment:
Take an overview spectrum (0-12 kHz) of a tube nfemia 12 tube-pieces each 5 cm long.

Now, insert 11 irises with an inner diameter ofmi@ between the pieces and measure a
spectrum again.

What do you observe?

Due to the introduction of the periodic scatterditgs, a band structure has developed. It shows
bands and band-gaps. Because we have a tube fwitedength, the bands consist of discrete
resonances. The band-gaps indicate frequencysangehich no sound can propagate through
the periodic structure.

Experiment:
Remove the end-piece with the microphone and puit gar in its place.

Choose a frequency within a band. Then chooseqaéncy within a band gap. Listen to the
difference in loudness.

Now we want to study how the spectrum is influenoga variety of parameters (Diameter of
the irisesd, number of piecesand length of a tube-pieee).

Experiment:
Replace the end-piece and measure spectra wigls is13 mm and 10 mm diameter.
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Now we will measure spectra for a different numtfeunit cells. In solid-state physics, a “unit
cell” is the part of space that is repeated pecialty to build up the solid. In our case, it igth
combination of a tube-piece and an iris. We hatepat a 12 iris in front of the microphone,
since the end-piece reflects the sound perfeatiyway. You may convince yourself that the
use of a 19 iris at one of the end-pieces makes no significéffierence in the spectra. Small
changes are due to the amount of air within the bbthe iris. For future experiments, you may
decide for yourself whether to put an iris at ad-prece.

Experiment:
Put in the 16 mm irises again and measure spemtiifferent numbers of tube-piece / iris .
Describe the way the spectrum changes. Are therenathematical patterns?

Now let’s study how the spectrum depends on thgtteaf a tube-pieca, which corresponds to
the lattice constant in solid-state physics.

Experiment:

Take a spectrum with 8 pieces 50mm long and in§d€mm diameter. Than replace the 50
mm long pieces by 75 mm long pieces. What diffeeendhe spectra do you observe? Can you
find a mathematical pattern?
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Background information:

Band gaps open up when the “Bragg condition” i§lfetl. You most probably know the Bragg
condition from x-ray and neutron scattering at talgs which are both examples of wave
reflection at a periodic lattice. The Bragg corats is fulfilled, when

nA =2a (4.6)

(a is the distance of reflecting planes). In our direensional case the reflecting irises
represent the reflecting planes of a solid. Refactin the solid is so effective at this
wavelength since the reflected waves from eachepkaid up constructively with perfectly
fitting phase. This is the reason why waves capnapagate easily at this wavelength.

A very convenient way to describe the scatteringnoimena at periodic structures is to use the

so-called “reciprocal space”. The reciprocal spacthe space of the wave vectdts In our
one-dimensional case we have a one-dimensiongrosal space with the wave-numbers k. If
a wave is reflected at a periodic structure andBhagg condition is fulfilled and the wave

number kK has changed t&', then the differencék’ —k =G is called a “reciprocal lattice

vector” G . In our one-dimensional case the wave has bedgcted andk has changed tok—
with ak that fulfils the Bragg condition.

k=n” 4.7)
a

In consequence, the reciprocal lattice vectorshferone-dimensional case are given by

G= n2—77 (4.8)
a
with an integer numben that can be positive or negative or zero. In galnehe reciprocal
lattice vectors are forming a periodic lattice imetreciprocal space, which is called the
“reciprocal lattice”. In this reciprocal lattice yacan define unit cells of the reciprocal space
that are called “Brillouin zones”. For the one-dms®nal case the reciprocal lattice points and
the Brillouin zones (BZ) are displayed in Fig. 4.1.

1.BZ

+“—>
ECECECEOECE'E.ECECE.ECE
7' 8n ' 6n ' 4n'2n' o '2n'd4n’ 6n’ Bn ' 10n'
a a a a a a a a a a

Fig. 4.1: Reciprocal lattice points (black dots), and Builo zones boundaries marked
by dashed lines.
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Due to the finite length of the tube, we have diserk-points in the reciprocal at which an

eigenstate (resonance) is observed. They are dgiyeegn 4.3. If we compare the smallest
reciprocal lattice vector

271

G="7 (4.9)
a

with the distance of the discrete k-points in tieet of finite length L

k=" (4.10)

we can see that there ark/2 discrete k-points in each Brillouin zone. Sircg-a, we can
conclude that the number of discrete k-points Bridlouin zone is twice the number of unit
cells. Atk=0 and zero frequency (energy), there is no resmnéigenstate) for a finite system.
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Fig. 4.2: Discrete k-points in reciprocal space (black datsy first Brillouin zone
marked by dashed lines. The example representsija\wéh 8 unit cells.

Let us now explore the dispersion relation in remipl space.

Analyze the data:

Plot the frequency as function of wave number ésonances in a setup made from 8 pieces 50
mm long and 7 irises of 16 mm diameter.

Determine the wave number as given in eqn. 4.3.
Where, in reciprocal space, do the band gaps op@n u

When counting the resonances, please note thétttageak at 370 Hz iaot a resonance. ltis
a peak in the transmission function of the speakerbphone combination.
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Background Information

From Bloch’s theorem, we know that wave functiams iperiodic structure can be written as the
product of a functioni(x) that has the periodicity of the lattice and ekg(with the periodicity
given by the wave number.

Y(x) =u, (x)e" (4.11)
A function of this form can be written in the form
W(x)=> Cu €. (4.12)
G

From this form of notation, we see that the wavecfion cannot be assigned to a single point in
the reciprocal space. The wave function is a sutim @ontributions from a single k-point in

each Brillouin zone. All of these k-points are neated by reciprocal lattice vectors. In solid-
state physics, therefore, the disperdgk) is usually plotted only in the first Brillouin re.

This is called the “reduced zone scheme” in contathe “extended zone scheme”.

Analyze the data:
Plot the dispersion relatida(k) in the reduced zone scheme

Analyze the data:

Analyze the spectra for a setup made from 10 weti$ evith 50 mm tubes and 16 mm irises and
for a setup made from 12 unit cells with 50 mm &ihed 16 mm irises.

Plot the dispersion relation into the reduced zsecteeme. Note that at higher frequencies, the
first and the last resonance in a band cannotdgifced easily.

You should keep in mind that each band hessonances when it is build up frgranit cells.
Only the first band has1 resonances because the lowest state of thathzndero frequency
and is not visible. This is important when youeadetine the wave number from the resonance
numbem.

Analyze the data:

Analyze the spectra for a setup made from 8 utig eeth 75 mm tubes and 16 mm irises and
compare it to a setup made from 8 unit cells withrim tubes and 16 mm irises.

Plot the dispersion relation into the reduced zuofeme.

Analyze the data:

Analyze the spectra for a setup made from 8 utig eeth 50 mm tubes and 16 mm, 13mm
and 10 mm irises, respectively.

Plot the dispersion relations into the reduced zmieme.
How does the dispersion depend on the iris diardeter
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In condensed matter physics, the density of s(&E€S) is often discussed. If the dispersion

relation is known in the complete Brillouin zonketDOS can be calculated from these data.
To illustrate how the DOS of a one-dimensional systooks, we will now analyse the data

with respect to this quantity.

Analyze the data:

Let’s take the spectrum for a setup made from 8 aalls with 50 mm tubes and 16 mm irises
and use it to determine the DOS. Since this igstem with a small number of unit cells, we
cannot simply count the number of states withireaergy interval. We will therefore calculate
the density by one over the frequency distance é@tviwo states.

1
f.—f

i+l i

p(f)= (4.12)

In a one-dimensional band structure, there areuanitjes in the density of states expected at
the band edges (van Hove singularity), since tbpeslof the bands approaches zero at zone
boundaries and symmetry planes. Due to the fmit@ber of unit cells, the density of states is

finite in our experiment, but a significant uptwhDOS at the band edges is clearly visible.
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4.2 Atom — Molecule — Chain

In the previous section, we have seen how band-dapslop in a free moving wave when
periodic scattering sites are introduced. Therodpproach to solid-state physics starts with the
eigenstates of a single atom. When two atoms @réined into a molecule, a splitting of the
eigenstates into bonding and anti-bonding statebserved. Finally, bands develop from these
levels, when many atoms are arranged into a chimrtheory, this approach is called the tight
binding model. Now we want to study this approagiperimentally starting with an atom,
which we will model with a 50 mm long cylinder witthe speaker on one end and the
microphone on the other.

Experiment:
Take an overview spectrum (0-22 kHz) in a singlerBf long tube-piece.

The peaks at 370 Hz, 2000 Hz and 4900 Hz are sonesces in the tube. They are due to the
frequency response of the speaker and microphomebination, which is not frequency
independent. Below 16 kHz there are 4 resonancései 50 mm long cylinder, which can be
described as standing waves with 1, 2, 3 and 4-ptaiees perpendicular to the cylinder axis,
respectively. At frequencies above 16 kHz, resoearare observed that have radial nodes
(cylindrical node surfaces). The inner diametertloé tube, which is 25.4 mm (1 inch),
determines the frequency of the first radial modie.the following, we want to concentrate on
the resonances below 16 kHz (longitudinal modeSpr these states, the magnetic quantum
numbermis zero ¢-states).

Experiment:

Measure a spectrum in a longer tube-piece (75 mfou will see that the resonances of the
longitudinal modes shift down in energy, but thetfradial mode stays above 16 kHz.

The next step is to model a molecule by combinimg pieces of 50 mm long tube with an iris
of 10 mm diameter (@10mm) between them. We aresihg to use the smallest iris because
we want to model a weak coupling of the atoms.

Experiment:

Take a spectrum (0-12 kHz for example) in a contimnaof two 50 mm long tube-pieces with
an iris @10 mm between them. What do you observe?

Note that the lowest bonding state has the frequeer. The first antibonding state is observed
at about 1100 Hz. For the other peaks the splitmfonding / antibonding states is visible
clearly. Remember that the small peaks at 370H2800Hz are due to the frequency response
of speaker and microphone.

Experiment:

Repeat the experiment with @13 mm and @16 mm irMésat is different?
Experiment:

Take spectra with an increasing number of unitscatid observe how bands develop.

Analyze data

Compare the frequency difference between bondidgaatibonding states with the width of the
corresponding band in a setup with large numbendfcells.

4-9
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4.3 Superstructures and unit cells with more than e atom

In this section, we will study the band structure @eriodic lattice that has a more complicated
periodicity. A superstructure is a periodic pdoatron of a periodic lattice. The periodic
perturbation has a translation vector that is seger multiple of the original lattice vector. $hi
can be, for example, a modification of every secomiticell. A superstructure results in a new
periodicity with a larger lattice vector, smallenlB®uin zone and a smaller reciprocal lattice
vector. There are many fields in condensed mpttgsics where superstructures play an
important role. For example, in surface sciencaeyrsurface structures show a superstructure
with respect to the bulk lattice. Another well-kmoexample for a superstructure in a bulk
lattice is a Peierls distortion. We will study thkect on band structure by introducing a
periodic perturbation into our one-dimensionalidatt

Experiment:

Make a setup of 12 tube-pieces 50 mm long and 13rimes and measure a spectrum. Then,
replace every other iris by a 16 mm iris and meatiue spectrum again. What do you observe?
Plot the band structure for both cases.

Experiment:

Make a setup of 5 unit cells with each unit celdmaf a 50 mm tube, a 16 mm iris, a 75 mm
tube, and 16 mm iris. Measure a spectrum andipéoband structure.

Experiment:

We want to understand this band structure bettersimg the tight binding model and
compare therefore the energy levels with the resoemfound in the single “atoms”. Take
spectra in a 50 mm tube and in a 75 mm tube. Comtpa “atomic” levels with the band
structure. What can you conclude? You may alsopawe to a spectrum measured in a
single unit cell.

Experiment:

You may now build different superstructures by walirand try to understand the change
in band structure due to the new periodicity.
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4.4 Defect states

In this section we will see how defects change lthed structure. Defects destroy the
periodicity of the lattice. They are localized foebations. If the defect density is small, the
band structure is more or less conserved and addltstates are introduced due to the defects.
The most important example for such defects statemndensed matter physics is certainly
the doping of semiconductors. The introductiondefect-states creates the acceptor and
donator levels that are responsible for the unmyoperties of these materials.

Experiment:
Make a setup of 12 tube-pieces 50 mm long and 16rimes and measure a spectrum.

Then, replace one tube-piece by a 75 mm long @adaneasure the spectrum again. What do
you observe?

Plot the band structure for both cases.

Note that the defect-state that is observed infitseband-gap has a localized wavefunction.
Since it is localized, it cannot be assigned tchars wave-number. The state is therefore
plotted as a horizontal line into the band struetur order to indicate that it has no well-
defined wave-vector. You may have noticed thapieks within the upper bands have shifted
a little bit and no longer show the high regulatitey did without defect. This is due to the
fact that the lattice has lost its periodicity asttictly speaking, it is no longer allowed to use
the wave-number as a good quantum number. Howéween, the plot of the band structure
you see that the defect does not change the bamtdtwst significantly. We can treat it as a
small perturbation and use the reciprocal spacé tie Brillouin zone as we did in the
periodic lattice.

Experiment:

Put the defect at other positions within the omaatisional lattice and measure the spectra
produced. Does the frequency of the defect-resmndapend on the position?

Experiment:
Use other tube lengths as a defect. You can tmp25 37.5 mm and 62.5 mm for example.

In some cases you find the defect state closeb@nd edge. Such a situation is used in doped
semiconductors. Donor-levels are defect states dh@ occupied by electrons and have a
position just below the conduction band. The etexs can be excited easily into the
conduction band and move there freely. This iy g@&milar our case with a 62.5 mm tube as a
defect. Acceptor-levels are unoccupied defecestgist above the valence band. Electrons
can be excited easily from the valence band inéadiéfect states and the remaining holes in the
valence band are responsible for the conductivity.

Further experiments:

You may build other setups with different typesdefects. Be aware that, within a band gap,
the propagation of a wave is suppressed stronghefbgction at the lattice. If the defects are

too far from each other, or from speaker and micomg, they cannot be observed. You may
try using shorter setups that have a small numbemi cells. In this case, it is easier to

observe all defect-states with sufficient amplitude

4-11
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Appendix 1

TeachSpin's Quantum Analogs Controller Box

Technical Description

The following chart provides a description of tloéerof each component on the Controller Box.

Controller Label

Function

Microphone Input

provides a source of +5 V dc (for biasing of capmainicrophones), and
accepts the ac signal placed atop that bias byitkphone

provides a fixed gain, of order 100, from about0to 20 kHz; ac-couple

AC Amplifier ;
at input
10-turn scale, providesgitenuation of amplified ac signal, by a factor give
Attenuator by (dial setting)/10. Example -- a dial settingddd turns implies an
attenuation of 9.5/10 = .95 or 95%. Only 5 % of the signarensmitted!
NOTE: A higher reading means less signal.
AC Monitor provides a direct view of the amplified signal at the attenuator's output

Envelope Detector

a rectifier system, giving the amplitude of theesimave signal present at
the AC Monitor output, on a cycle-by-cycle basis

Detector Output

a dc-coupled positive voltage,abgput of the envelope detector

Sine Wave Input

provides the entry point for ac signals from siggeherator or computer
sound-card

Speaker Output

directly coupled to Sine Wave Input below it on gamel; provides the
point of attachment for 3.5-mm speaker plug

Frequency-to-Voltag

ewhen toggled to On, this module derives a sigmahfSine Wave Input,

Converter and converts its frequency to a voltage, at convenstio 1 Volt per kHz
10-turn dial, allowing the addition of a 0 to -10\/offset to the output of
DC Offset
the Frequency-to-Voltage converter
DC Output the (possibly dc-offset) output voltagehe F-to-V converter module

Quantum Analogs uses sound waves in cylinders phdres to model the quantum states in
semiconductors, hydrogen atoms, and hydrogen mlekecu In these experiments, our

dependent variable

is usually the amplitude of sband detected at the microphone. The

Controller accepts the microphone signal at itsrbpbone Input and amplifies the signal's ac

component. The Attenuator is then used to decr@aserease the magnitude of the amplifier

output to keep the signal size in an appropriatgea For example, in experiments using the
computer, the signal size must be in the rangevfoch the sound card has a linear response.
If the AC Monitor signal exceeds the peak-to-peakage limits for your particular computer,

the sound card input will begin to saturate.

Thigl give distorted response curves.

Appendix 2 — Recognizing and Correcting Saturatiorprovides a detailed explanation.
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Appendix 2

Recognizing and Correcting Saturation

When you are using a computer sound card botheasaihirce of the speaker waveforms
and as the detector of the resulting waveforms ftleenmicrophone, you must check to
make sure that the signals are not saturating.calge the specifications for computer
soundcards vary widely, we cannot be sure thatikgegignals below one or two volts

peak-to-peak will be sufficient. You will have &xperiment with your own system to

see what works.

In the Quantum Analogs computer-based experimemés,use the amplitude of the
microphone signal on the computer screen as atrapimeasure of the intensity of the
sound the microphone is receiving. For thesative measurements to be accurate, the
system must be operating in a region where thdioakhip of signal to response is
linear. This means that any change the input sigom the microphone must result in
proportional changes in the heights of the peaks.

The following instructions assume that you haveeaperiment set up, and have the
Quantum Analogs program “SpectrumSLC.exe” runnif@ne way to determine if you
are operating in the linear range is to perforneaded scans over some feature, such as a
single resonance, and to vary the attenuator gettirthe Controller.

First, use the Quantum Analogs program to adjustsieaker output and microphone
input strengths on the computer. To set the spaakensity, move the slider marked
Amplitude Output Signal to the middle of its rang€The slider is in the lower left
corner.) To set the microphone input, go to thenumacross the top of the screen.
Choose Configure > Input Channel/Volume > MicrophorSet that slider to the middle
of its range also.

Now take a series of spectra while adjusting AmeeENUATOR knob on the Controller.
The microphone signal coming from the apparatust fpasses through a built-in
amplifier. It then goes through the attenuatoobefeaching thec-MONITOR connector.
The ten-turn knob on the attenuatiminishes the incoming signal by a factor ranging
from zero to one, so a setting of 9.8 turns stdodsn attenuation of 0.98 (or 98 %)
relative to the maximum possible. Only 2 % of signal is being transmitted.

After taking an initial wide-range spectrum, cho@ssection that includes the highest
peak and a smaller one next to it. Readjust tha 8z cover just this portion. Using the
option that allows you to keep successive speasiblg, take Spectrum 1, 2, 3, etc. with
the attenuator knob set at 9.8, 9.7, 9.6, andWBtist(out of ten). The nesting heights of
the peaks will tell you whether or not the systesnbehaving in a linear fashion.
Continue to go to lower numbers on the 10-turn dielting until you have visual
evidence of saturation. (The peak heights willorgger be increasing evenly.)

Once you have reached saturation, increase theuatten until you are back into the
linear range. Now you can operate with confidetizd the signals you see really are
proportional to the amplitude of the sound wave gistudying.
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Connecting to a Computer — Instructions & Troubleslooting

Choice of Sound card

You should use a sound card of reasonable qu#tlitpay cost about $50 to $100. A very
cheap soundcard (including some on-board cards)vaag one of the following problems:

(1.) The sample rate may not be high enough. @4&Hmples/second is needed)

(2.) There might be high cross-talk between ougmat input signal.

(3.) The card might not be able to deal with inpiidl output simultaneously

(4.) The Line-In mode may be lacking.

Installation of Soundcard

Install the drivers of your soundcard as directgdhe vendor. Some soundcard drivers come
with a set of filters and sound-effects which mayslwitched on by default at installation. Be
sure to switcloff all these filters and effects.

Connecting the soundcard output signal to the Quamnim Analogs Controller

Build a simple experimental system, such as a amesional layout of the speaker, three
cylinders, and the microphone laid out in the V+olel. Attach a BNC splitter or “tee” tNE
WAVE INPUT on the Controller. Using the adapter cable, contiee output of the sound card to
one arm of the splitter. With a BNC cable, conthg soundcard output signal from the
splitter to Channel 1 of your oscilloscope. Pling tead from the speaker end of your
experimental tube tePEAKER OUTPUT on the Controller. The sound card signal is nomg to
both the speaker and Channel 1. (Some soundcawdsrhore than one output connector. In
this case, you should check the manual of the starddo determine which connector is used
for headphones, and use this connector.)

Choose Line-In mode of the soundcard

The microphone signal of the Quantum Analogs expemt has been amplified in the
Controller. A signal with up to 10V, rms, is proew at theac-moNITOR of the Controller.
Depending on the strength of the resonances in gperimental setup, you will have a signal
of a few volts on thec-MONITOR connector. Soundcards have two different modesmft
that can be used, the Line-In mode and the Microphmode. Whenever possible use the
Line-ln mode. The mode of the soundcard can be set in the amo@pectrumSLC.exe by
going in the menu to Configure > Input Channel/\fo&u In the window that opens, there is a
box showing all available input-modes of your indial soundcard. Choose Line-In. If there
is no Line-In mode, choose Microphone and readnt section. In the Line-In mode, the
soundcard samples a signal of about 1V rms maximiitve output level of the Controller at
AC-MONITOR may need to be attenuated using AITEENUATOR knob on the Controller to avoid
saturation of the analog-to-digital converter ie gound card. Read the section on saturation
on page A3-4. Be sure that the voltage at AC-Mwoniibes not exceed 1V rms maximum. In
the worst case, the soundcard could be damagexicegsve voltages.

A3-1
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Using Microphone-mode instead of Line-In-mode

Whenever possible, the Line-In mode should be udédiour sound card does not provide
such a mode, it may be possible to use the micropimode. However, it is likely that you

will have problems with saturation and/or distantibthe signal is not adjusted to the optimum
range. In the Microphone-mode, the soundcard seatla DC-voltage as the bias voltage for
the microphone. This DC-voltage can make a sigaifi offset of the input signal. In

addition, the input is much more sensitive (by @daof about 100) compared to the Line-In
mode. The Input signal will already be saturated &vel of about 10 to 100 mV rms. To
avoid saturation, you will need to attenuate tlgnai much more than in the Line-In mode.
The attenuator may need to be high as 9.9 turngrégent saturation. Read section on
saturation below.

Connecting the soundcard-input to the Quantum Analgs Controller

The microphone signal will be sent two differenagds. Connect the microphone on your
experimental tube touCROPHONE INPUT on the Controller. Put a BNC splitter on the
Controller connector labelegt-MONITOR. From the splitter, use the adapter cable to sead
amplified microphone signal to the Line-In input e computer soundcard, and a BNC cable
to send the same signal to Channef the oscilloscope. Channel 2 will show the aksignal
coming from the microphone. Some Soundcards hdfereit connectors for Line-In and for
Microphone mode. If this is the case be sure tothee.ine-In connector. Other sound cards
use the same connector for both, Line-In and Micom@ mode. The electrical properties of
the connector are switched by switching the modaensoftware. Some of the soundcards use
the same connector even for digital input. Youusth@hoose the correct mode in the software
before connecting the cable. You should also take oot to plug a cable with voltage on it
into the soundcard. This might destroy the soward.c Please avoid any static electrification,
and do not touch the central wire of the connewatioen plugging in or out. Be sure that the
voltage at sound-card input does not exceed 1V mmagimum. In the worst case, the
soundcard may be damaged by excessive input veltage

Setting input and output levels in the computer.

There are four different places where input anghatulievels can be controlled. You should be
aware of all of them, to be sure that you are ugog system with the optimal settings.

1. The Output level of the speaker can be setinvittindows as it is done when you hear
music from the computer. You may open System-@bmtSounds and Audio > Audio >
Volume and adjust the output volume. On some caenputhere is an output-volume
slider provided for easier adjustment.

2. In the program SpectrumSLC.exe, there is a rlidethe lower left corner labeled
Amplitude output signal. It determines the amyalé of the sine wave sent to the output
by the program. The slider can be used to chanogmiblevel easily in measurements. Be
aware that (1) and (2) are independent ways tosadhe output level. They are both
effective.

3. The input level in either the Line-In mode oe tiicrophone-mode can be adjusted by the
slider provided in the program SpectrumSLC.exe thahavailable in the menu of the
program when going to Configure > Input Channelivioé.

4. TheATTENUATOR knob on the Quantum Analogs Controller also detgesithe level of the
microphone signal before it goes into the sound.car
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Cross-talk of the channels

Depending on the quality of your sound card andaitteal settings, there might be a problem
with cross-talk between the output and input chenné the speaker output signal is getting to
the input channel internally on the sound cards thieates a flat background in the
measurement which interferes with the detectedasigithis can be a serious problem, since
line-shapes of the resonances are modified sigmifig. See the figure below for examples. If
you detect cross-talk in your experiment, it majphe reduce the amplitude of the speaker
output signal. In very cheap sound cards, a fegdlmp may build up due to the cross-talk.
In this case, a fixed frequency is observed in bsonator, which does not sweep when
sweeping a frequency scan. When this happensprhe solution is to purchase a better
soundcard. Read the next section on detectinggrabwith the signal.

i)
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Spectrum without cross talk
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Frequency [Hz]
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Detecting problems with the signal

A reliable way to detect problems with the sigrsala have a look at the live image of the
Fourier-transformation of the input signal. Thegnam SpectrumSLC.exe provides this
information in an extra window that can be openggding to the Menu > Windows > Live
FFT of the Microphone signal. When sweeping a spet there should be a single peak
sweeping from low frequency to high frequencythHre are additional peaks, you have a
problem with the signal. There can be peaks dtdriparmonics (double or triple frequency)
which indicate distortion or saturation of the signlf there are peaks fiked frequency
during a measurement which do not sweep, you piplbave a feedback loop (read about
cross talk) or you might have another externalaigoupling into your experiment (external
sound or external electrical AC signal). Additibpaaks can also be created by software
filters or sound-effects of the sound card. Iis ttase, switch off all software filters and sound-
effects in the sound card software.

If, during this sort of sweep measurement, you tmsigle peak on a low background, the
signal is perfect. See figure below.

Fourier-transformation of a perfect | & - JElx]
signal
o ZU‘DU QUIEIU 6EIIEIEI BUIEID IUDIUU IZEIDU 14UIEIEI 16EIIDEI IBEIIEID 20000
Frequency [Hz] |
Signal with higher harmonics due toj& - [B]X]

distortion or saturation

L L L L I L L L
a 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Frequency [Hz]

Saturation

Problems with saturation of the analog-to-digitahwerter in the sound card are particularly
likely when using the Microphone mode instead o tiecommended Line-In mode. To
prevent saturation, the input-signal needs to bdeaed to an optimum range. In the newest
version of the SpectrumSLC.exe software (versidatisg with 7.1), there is a blue bar in the
lower left corner of the main window which indicateaturation. If the blue bar blinks while
you are passing through the top of a peak, theabkigh saturating the analog-to-digital
conversion of the sound card. In this case, yoedne reduce the level of the signal by
increasing the reading on th&TENUATOR knob. Saturation is observed at amplitudes above
100 units on the computer display.
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There is another way to check the linearity of signal transmitting path. In the Quantum
Analogs computer-based experiments, we use theitaghgplof the microphone signal on the
computer screen as an arbitrary measure of thedsamplitude the microphone is receiving.
If these relative measurements are to be accutsesystem must be operating in a region
where the relationship of signal to response iedin This means that increases in the input
signal from the microphone must result in corresfpog increases in the heights of the peaks.

One way to determine if you are operating in thedr range is to perform repeated scans over
some feature, such as a single resonance, andydheattenuator setting on the Controller.
The following instructions assume that you haveegperiment set up and have the Quantum
Analogs program “SpectrumSLC.exe” running.

Take a series of spectra while adjusting #T@ENUATOR knob on the Controller. The
microphone signal coming from the apparatus pdgseshrough a built-in amplifier, and then
goes through the attenuator before reachingada@ONITOR connector. The ten-turn knob on
the attenuator diminishes the incoming signal llgctor ranging from zero to one, so a setting
of 9.8 turns stands for an attenuation of 0.98tikeato the maximum possible, or a
transmission of 2% of the signal.

After taking an initial wide range spectrum, choasgection that includes the highest peak and
a smaller one next to it. Readjust the scan tercqyst this portion. Using the option that
allows you to keep successive spectra visible, gectrum 1, 2, 3, etc. with the attenuator
knob set at 9.8, 9.7, 9.6 . . . turns (out of tefihe nesting heights of the peaks will tell you
whether or not the system is behaving in a linaahibn. Continue to go lower on the 10-turn
dial setting until you have visual evidence of sation.

Once you have reached saturation, move back iettirtear range. Now you can operate with
confidence that the signals you see really are@tamal to the amplitude of the sound wave
you are studying.
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