The microclimate in packages, showcases, microclimate vitrines and backing board protected paintings

Giovanna Di Pietro, Bern Academy of the Arts, Department of Conservation and Restoration, Switzerland

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) [International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

Introduction

examples of closed and semi-closed systems that contain hygroscopic materials

Microclimate vitrine, design Laurent Sozzani closed system= (almost) no air exchange

artworks stored packed in plastic foils

A museum cabinet (Museum für Gestaltung, Zürich closed system= (almost) no air exchange

Graphic art (Museum Spittel, Büren an der Aare) semi-closed system: moderate air exchange

painting with a backing board (Schloss Altenklinge) semi-closed system: moderate air exchange

Aim of these lessons is to be able to understand the role of the hygroscopic materials in these systems and be able to establish grounded hypothesis about their climate response

Fundamentals

- **Lesson 1**
	- definition of saturation humidity as equilibrium between the water liquid and gas phase in a closed system
	- definition of absolute and relative humidity
- **Lesson 2**
	- the water vapour concentration diagram. Definition and possible uses
- **Lesson 3**
	- the sorption isotherm
- **Lesson 4**
	- the RH response of closed systems subjected to temperature changes. Case study: a microclimate vitrine
- **Lesson 5**
	- the RH response of closed system after the insertion of hygroscopic materials
	- the RH response of semi-closed system subjected to surrounding RH variations

Advanced

- **Lesson 6**
	- backing board protected paintings subjected to RH changes
- **Lesson 7**
	- backing board protected paintings subjected to T gradients

Lesson 1 The definition of relative humidity

We look at the value of the Relative Humidity in the bottle

RH in the bottle with water container

Animation 1. RH increase in a bottle once a beaker with water is inserted (please see "Animation" on Pressbooks for video).

1. The RH increases till (almost) 100% 2. The level of water is not visibly lower

Formulate:

- 1. an hypothesis for the increase of RH = a description of the mechanism leading to the increase of RH
- 2. a test experiment for your hypothesis
- 3. a prediction for the outcome of your test hypothesis

Previous years students have formulated 2 different hypotheses for the transport of water from the liquid to the air:

Reaction hypothesis: water molecules (H2O) react with air molecules (N2,O2) and are stripped away from the liquid

Bond breaking hypothesis: the hydrogen bonds among liquid water molecules get broken and the water molecules detach from the liquid

Test experiment for the reaction hypothesis: remove the air from the bottle (or dessicator) and measure the relative humidty

prediction: according to the "reaction hypothesis" the relative humidity should not increase if air is removed from the bottle as there are no air molecules (N2, O2) with whom water can react

Animation 2. RH increase in a dessicator under vacuum after a beaker with water is inserted (please see "Animation" on Pressbooks for video).

The RH in a closed container without air but with liquid water increases. The reaction hypothesis cannot be retained and the bond breaking hypothesis will be retained

We want to understand:

Why and when the RH stops increasing

If the water level in the small container decreases

Energy of Hydrogen Bonding = 6-30 kJ/mol

If work is done on this system (=2 H_2O molecules connected by an hydrogen bonding) the "spring" can be stretched as far as to break it

Which type of work?

Kinetic work= Put molecules in motion= increase temperature

$$
\frac{1}{2}m\overline{v^2} = \frac{3}{2}k_BT
$$

m= mass v= speed k_B = Boltzmann's constant T= temprature (in Kelvin) (in an ideal gas)

The molecules in liquid water move all the time.

At constant temperature they do not have the same velocity therefore also not the same kinetic energy

Why the molecules do not have all the same velocity?

Simulation: 4 balls, all with the same mass and initial speed that undergo only elastic collisions (collisions where the total kinetic energy is conserved)

Collision lab at http://pHET.colorado.edu/

[Simulation of a 2D gas relaxing towards a Maxwell–Boltzmann speed distribution](https://en.wikipedia.org/wiki/Maxwell%E2%80%93Boltzmann_distribution#/media/File:Simulation_of_gas_for_relaxation_demonstration.gif) is licenced under CC BY-SA 4.0

Distribution of speed in a gas

from Khan Academy, licensed under CC-BY-NC-SA

Distribution of speed in a liquid is also Maxwell-Boltzmann

molecules will move with a large range of speeds. The faster molecules have also a higher kinetic energy $E_k = 1/2$ m v^2

This energy can be used to break the H-bonds.

from Khan Academy, licensed under CC-BY-NC-SA

speed corresponding to the kinetic energy necessary to break the hydrogen bonds

All molecules whose velocity is higher than a certain value can break the hydrogen bonds and evaporate (if they are close to the surface) The number of molecules breaking off from the liquid phase in a unit time is called the evaporation rate

The higher the temperature, the higher the amount of molecules that can evaporate == the higher is the evaporation rate

Maxwell Boltzmann distribution for M=18 g/mol and T=0, 20 and 50 °C

Evaporation rate = Number of molecules that evaporate in one second

Question: The evaporation rate:

- 1. increases with the temperature
- 2. decreses with the temperature
- 3. does not depend on the temperature

Question: The evaporation rate:

- 1. increases with the temperature
- 2. decreses with the temperature
- 3. does not depend on the temperature

The evaporation rate is controlled by the temperature and it increases with the temperature

If a water vapour molecule collides with liquid water or with the walls, it can condense.

Condensation rate=Number of molecules that condense per second

The condensation rate increases with increasing concentration of water vapour molecules. The condensation rate is controlled by the number of molecules present in the air volume.

We want to understand:

Why and when the RH stops increasing

If the water level in the small container decreases

The amount of water vapour molecules in the bottle increases as long as the evaporation rate is larger than the condensation rate. When the evaporation rate becomes equal to the condensation rate, the amount of water vapour molecules in the bottle stops increasing.

Evaporation rate= **condensation rate**

Dynamic equilibrium==amount of water vapour molecules is constant but water molecules evaporate and condense all the time

Evaporation rate= **condensation rate**

Max number of water molecules in the bottle

In the air volume the concentration of water vapour molecules has reached saturation

RH= Concentration of water molecules in a volume Max concentration of water molecules in the volume x 100

Concentration of water molecules in a volume=Absolute Humidity

Max concentration of water molecules in a volume= c_{sat}

If $AH=c_{sat}$ ->RH=100%

A definition of relative humidity that better clarifies the process going on :

> RH= **CONDENSATION** CONDENSIGNMENT evaporation rate x 100

Temperature dependency of the maximum concentration of water vapour in the volume

T increases \rightarrow evaporation rate increases \rightarrow condensation rate increases

when evaporation rate=condensation rate \rightarrow RH=100%

equilibrium established at a higher absolute humidity

temperature dependency of c_{sat}

Maximum water vapour concentration in a volume

The volume of the bottle is 2L, the temperature 20 °C. Which is the mass of water necessary to saturate this volume?

temperature dependency of c_{sat}

Maximum water vapour concentration in a volume

The volume of the bottle is 2L, the temperature 20 °C. Which is the mass of water necessary to saturate this volume? 0.034 g – at saturation water vapour molecules do not «fill» the volume

- Containers or rooms usually do not contain liquid water.
- relative humidity, absolute humidity and saturation concentration can still be defined.

Optional

Factors affecting the time necessary to reach equilibrium

The time necessary to reach dynamic equilibrium depends on:

- RH in the bottle
- Temperature of the air and water
- Concentration gradients in the bottle
- Temperature gradients in the water

Concentration gradients in the volume

layers of water vapour close to the surface create a local equilibrium == a layer at RH=100% that decreases net evaporation

Ventilation removes concentration gradients

The time necessary to reach dynamic equilibrium depends on:

- RH in the bottle
- Temperature of the air and water
- Concentration gradients in the bottle
- Temperature gradients in the water

Temperature gradients in the water

the fast molecules evaporates and the average molecular velocity decreases

The temperature of the water at the surface decreases-> the evaporation rate decreases = evaporative cooling

Optional The RH in equilibrium with saturated salt solutions

The Na+ and Cl- ions place themselves between the water molecules

The evaporation rate is

A) equal to the evaporation rate in pure water B) higher C) lower

The evaporation rate is

A) equal to the evaporation rate in pure water B) higher C) lower

The condensation rate is

A) equal to the condensation rate in pure water B) higher C) lower

The condensation rate is

A) equal to the condensation rate in pure water B) higher C) lower

As the condensation rate= evaporation rate the amount of water vapour molecules in the bottle is

A) equal to the pure water case B) higher C) lower

As the condensation rate= evaporation rate the amount of water vapour molecules in the bottle is

A) equal to the pure water case B) higher C) lower

RH in the bottle with a saturated NaCl solution

Animation 3. RH in the Bottle with a Saturated NaCl Solution (please see "Animation" on Pressbooks for video).

82

Artikel mit

gleichgewichtfeuchte bei gesättigten Salzlösungen: Auf Moodle/Physical Phenomena/Learning Materials/ Additionals

Greenspan, L. HUMIDITY FIXED-POINTS OF BINARY SATURATED AQUEOUS-SOLUTIONS *JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY,* **{1977}***, {81}*, {89-96}

KCl 85 $K^+=0.133$

The microclimate in packages, showcases, microclimate vitrines and backing board protected paintings

Giovanna Di Pietro, Bern Academy of the Arts, Department of Conservation and Restoration, Switzerland

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) [International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)
Lesson 2 the water vapour concentration diagram

water vapour concentration (g/m3)

The water vapor concentration diagram describes the relation between absolute humidity, relative humidity and temperature at standard pressure (1 atm) **for inert spaces** or **with minor amount of hygroscopic materials** or **at short times**

1. Uses of the water vapour concentration diagram

The water vapour concentration diagram

water vapour concentration (g/m3)

Sealed Raku box at 20 °C and 60%RH: at which temperature do you expect condensation

water vapour concentration (g/m3)

We move horizontally because the system is closed and without hygroscopic materials: the absolute humidity is constant.

Condensation expected at 12 °C. The temperature at which there is condensation is called dew point

2. Uses of the water vapour concentration diagram

The water vapour concentration diagram

water vapour concentration (g/m3)

Room at 35% RH and 24 °C. One corner is at 14 °C. Do you expect condensation in that corner?

water vapour concentration (g/m3)

No, but the RH is expected to be about 65%.

3. Uses of the water vapour concentration diagram

The water vapour concentration diagram

and

ASHRAE Guidelines for Museums, libraries and archives, 2019

ASHRAE= American Society of Heating, Refrigerating and Air-Conditioning Engineers

Values of saturation concentration

App for values of saturation concentration, absolute humidity and relative humidity:

<https://www.conservationphysics.org/atmcalc/atmocalc.html>

or type the Tetens equation in excel and calculate the saturation concentration for any temperature

4. Uses of the water vapour concentration diagram: mixing of air at different RH

$$
RF = \frac{AF}{SF} \tag{1}
$$

$$
SF = 17.2 \frac{g}{m^3}
$$

$$
AF = \frac{M_W}{V}
$$
 (2)

$$
M_W = M_{W,1} + M_{W,2} \tag{4}
$$

$$
M_{W,1} = AF_1 \times V_1 = 5.2 \frac{g}{m^3} \times 0.5 \times 0.001 \, m^3 = 0.0026 \, g \tag{5}
$$

$$
M_{W,2} = AF_2 \times V_2 = 13.8 \frac{g}{m^3} \times 0.5 \times 0.001 \ m^3 = 0.0069 \ g \tag{6}
$$

$$
AF = \frac{(0.0026 + 0.0069)g}{0.001 m^3} = 9.5 \frac{g}{m^3}
$$
 (7)

$$
RF = \frac{9.5 \, g/m^3}{17.2 \, g/m^3} = 0.55 \tag{8}
$$

$$
RF = \frac{AF}{SF} \tag{1}
$$

$$
SF = 17.2 \frac{g}{m^3}
$$

$$
AF = \frac{M_W}{V} \tag{2}
$$

$$
M_W = M_{W,1} + M_{W,2} \tag{3}
$$

$$
M_{W,1} = AF_1 \times V_1 = 5.2 \frac{g}{m^3} \times 0.25 \times 0.001 \ m^3 = 0.0013 \ g \tag{4}
$$

$$
M_{W,2} = AF_2 \times V_2 = 13.8 \frac{g}{m^3} \times 0.75 \times 0.001 \, m^3 = 0.010 \, g \tag{5}
$$

$$
AF = \frac{(0.0013 + 0.01)g}{0.001 m^3} = 11.65 \frac{g}{m^3}
$$
 (6)

$$
RF = \frac{11.65 \, g/m^3}{17.2 \, g/m^3} = 0.67\tag{7}
$$

The microclimate in packages, showcases, microclimate vitrines and backing board protected paintings

Giovanna Di Pietro, Bern Academy of the Arts, Department of Conservation and Restoration, Switzerland

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) [International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

Lesson 3 the sorption isotherm

Absorption isotherm

from Fredriksson, M., & Thybring, E. E. (2018). Scanning or desorption isotherms? Characterising sorption hysteresis of wood. *Cellulose*, *25*(8), 4477–4485. <https://doi.org/10.1007/s10570-018-1898-9>

We will neglect the differences between absorption and desorption

The equilibrium moisture content (emc) of a material is the mass of water contained in the material expressed as percentage of the dry mass of the material

$$
emc = \frac{m - m_{dry}}{m_{dry}}
$$

equilibrium= material in equilibrium with surrounding RH

- $m_{\text{drv}} = 100 \text{ g}$, $m_{\text{water}} = 20 \text{ g}$ --> emc =
- m_{drv} =100 g, $m_{\text{RH=50\%}}$ =105 g --> emc =
- $m_{\text{dry}} = 80 \text{ g}$, $m_{\text{water}} = 10 \text{ g}$ --> emc =
- m_{drv} =80 g, $m_{\text{RH=50\%}}$ =85 g --> emc =

from www.conservationphysics.org , [Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License](http://creativecommons.org/licenses/by-nc-nd/3.0/)

from https://www.buildingscience.com/documents/digests/bsd-138-moisture-and-materials

From Margaux Genton, 2015, BA Thesis, Hochschule der Künste Bern, Konservierung und Restaurierung

RH=0%

RH<20%

monomolecular layer

20%<RH<90%

further layers with less strong bonds, freezing temperature well below 0°C swelling and shrinking depends on RH

RH>90%

- capillary water, free water
- Freezing temperature at 0°C
- Capillary water has no influence on swelling and shrinking

Now we are equipped to look at the buffering effect of hygroscopic materials in 3 different situations:

− **closed systems undergoing temperature changes**

− **RH changes in a closed system after the insertion of hygroscopic materials**

− **semi-closed systems containing hygroscopic materials exposed to RH changes**

Closed system: no air exchange with the surrounding environment

semi-closed system: air exchange with the surrounding environment
The microclimate in packages, showcases, microclimate vitrines and backing board protected paintings

Giovanna Di Pietro, Bern Academy of the Arts, Department of Conservation and Restoration, Switzerland

Lesson 4

Buffering effect of hygroscopic materials against temperature changes in closed systems. Case study: microclimate vitrine

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) [International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

Design of the microclimate vitrine based on Sozzani, L. S. G. (1997). An economical design for a microclimate vitrine for painting using the picture frame as the primary housing. *Journal of the American Institute for Conservation*, *36*, 95–107.

Microclimate vitrines are built within the frame of a painting to stabilize the relative humidity. They consist of an impermeable backing board, a front glazing and careful lateral sealing with different types of tapes and gaskets to reduce as much as possible the air exchange

Dummy microclimate vitrine with space for a RF and T Datalogger

Temperature inside and outside the vitrine

Based on this temperature and on the fact that the initial measured AH in the system is 5.93 g/m3, which is the expected RH if the system would have been without hygroscopic materials? (data as Excel and csv file)

predicted RH if the vitrine would be empty, inert and closed

temperature decreases \rightarrow RH increases (and viceversa) condensation when T<dew point

Question: if the microclimate vitrine is closed and does not contain hygroscopic materials (it is inert) the AH:

- increases when the temperature increases
- decreases when the temperature increases
- is constant and independent from the temperature

Question: if the microclimate vitrine is closed and does not contain hygroscopic materials (it is inert) the AH:

- increases when the temperature increases
- decreases when the temperature increases
- is constant and independent from the temperature

Measured AH: a temperature decrease leads to a decrease of the AH (and viceversa) despite the system is closed

time (dd:mm:yy hh:mm)

Measured RH: a temperature decrease leads to a small decrease of the RH (and viceversa).

Formulate:

- 1. an hypothesis for the decrease of the absolute humidity when the T decreases = a description of the mechanism leading to the decrease of RH
- 2. a test experiment for your hypothesis
- 3. a prediction for the outcome of your test experiment

Quantitative estimation

Given that the free volume of the microclimate vitrine (volume not occupied by the panel and by the RH and T datalogger) is about 300 cm^3 , estimate how many grams of water vapour are removed from the volume for the AH to decrease from 5.15 to 1.6 g/m3 when the temperature decreases from 18° to 0°C.

Quantitative estimation

Given that the free volume of the microclimate vitrine (volume not occupied by the panel and by the RH and T datalogger) is about 300 cm³, estimate how many grams of water vapour are removed from the volume for the AH to decrease from 5.15 to 1.6 g/m3 when the temperature decreases from 18° to 0°C.

0.001 g!

The removal of a very small amount of water vapour is sufficient to lead to large changes in the absolute humidity and measureble changes in the relative humidity

large changes in T lead to small changes in RH, changes are in the same direction.

this is the so called **buffering effect of hygroscopic materials against T changes** in closed systems.

Unpacking the buffering effect of hygroscopic materials against T changes in closed systems:

- 1. hygroscopic materials contain much more water than the volume
- 2. the total amount of moisture in the system is constant
- 3. the emc of hygroscopic materials decreases by increasing temperature

1. Hygroscopic materials contain much more water than the volume

Comparison

Water vapour content of an empty volume (cube of size 5 cm) at 20° C und RH= 50% =

Emc of a cube of wood with size 5 cm at 20°C und RH= 50% (density of wood = $0.8g/cm3$)

Water vapour content of an empty volume (cube of size 5 cm) at 20°C und RH= 50% \approx 0.001 g

Emc of a cube of wood with size 5 cm at 20°C und RH= 50% (density of wood = 0.8 g/cm3) ≈ 10 g

at the same volume hygroscopic materials contain much more water than air (up to 4 orders of magnitude more)

2. the total amount of moisture in the system is constant

System is closed-> The mass of water is constant in the system

but moisture can move between hygroscopic materials and volume

3. T dependency of the sorption isotherm

Question: T increases. The moisture content:

- a. is constant
- b. increases
- c. decreases

3. T dependency of the sorption isotherm

Question: T increases. The moisture content:

- a. is constant
- b. increases
- c. decreases

T increases \rightarrow emc decreases

from: M. Mecklenburg, Course outline

Notice the difference!

Maximum water vapour pressure in a volume

Water content of air: increases with temperature

water content of a materials: decreases with temperature

Unpacking the buffering effect of hygroscopic materials against T changes in closed systems:

- 1. hygroscopic materials contain much more water than the volume -> Mass of water in the system≅ Mass of water in the hygroscopic material
- 2. the total amount of moisture in the system is constant -> Mass of water in the hygroscopic material is (approximately) constant
- 3. the emc of hygroscopic materials decreases by increasing temperature

Graphic solution to predict the RH change in the microclimate vitrine when the T changes :

The new RH can be red from the sorption isotherm at lower temperature. We move horizonntally because the mass of water in the hygroscopic materials is approximately constant. The final humidity will be slightly lower than the initial value.

Mathematical solution to predict the RH change in the microclimate vitrine when the T changes :

$$
M_{water\ in\ system} = constant \tag{1}
$$

 (3)

$$
M_{water\ in\ system} = M_{water\ in\ air} + M_{water\ in\ materials} \tag{2}
$$

 $M_{water\ in\ material} >> M_{water\ in\ material} \Rightarrow M_{water\ in\ system} \approx M_{water\ in\ material} = constant$

$$
M_{water\ in\ material} \approx M_{material\ dry} \times (\alpha \times RH - \beta \times \Delta T) \tag{4}
$$

$$
M_{material\ dry} \times (\alpha \times RH_f - \beta \times \Delta T_f) = M_{material\ dry} \times (\alpha \times RH_i - \beta \times \Delta T_i)
$$
 (5)

$$
RH_f \approx RH_i + \frac{\beta}{\alpha} \times (T_f - T_i) \tag{6}
$$

$$
RH_f(T_f) = RH_i(T_i) + \frac{\beta}{\alpha}(T_f - T_i) \qquad \qquad \begin{array}{c}\n\text{O}\lt RH\lt 1 \\
\beta = 4 \times 10^{-4} \, (\text{°C-1}) \\
\alpha = 0.15\n\end{array}
$$

Assumptions:

- system is closed
- moisture mass in the system is in the hygroscopic materials
- linear approximation of the sorption isotherm

In a closed system containing hygroscopic materials and subjected to T changes a decrease of T leads to a small decrease of the internal RH (and viceversa)

The microclimate in packages, showcases, microclimate vitrines and backing board protected paintings

Giovanna Di Pietro, Bern Academy of the Arts, Department of Conservation and Restoration, Switzerland

Lesson 5

closed systems: RH changes after the insertion of hygroscopic materials semi closed systems: buffering effect against surrounding RH changes

This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0](http://creativecommons.org/licenses/by-nc-sa/4.0/) [International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

closed system: RH changes after the insertion of hygroscopic materials

Situation:

newspapers freshly donated to a collection. The newspapers were previousy stored in a cellar and are possibly contaminated with moulds. They are sealed in plastic foils to avoid contamination in the museum. Which is the RH within the packages?

Experiment: measured RH in a closed system (bottle) initially at 30%RH, then filled with paper conditioned at 65% RH and closed

Animation 4. Measured RH in a Closed System (Bottle) Initially at 30%RH, then Filled with Paper Conditioned at 65% RH and Closed (please see "Animation" on Pressbooks for video).

Formulate:

- 1. an hypothesis for the increase of the RH
- 2. a test experiment for your hypothesis
- 3. a prediction for the outcome of your test experiment

Deductio ad absurdum:

possibility 1: RH stays 30% \rightarrow emc in the paper= 3% \rightarrow Δemc= 3.5%, if the dry mass of the paper= 100g, the paper must loose 3.5 g of moisture. If this moisture goes in air, the RH becomes $100\% \rightarrow$ contraddiction!

Deductio ad absurdum:

possibility 2: 30<RH<65, e.g. RH=50% \rightarrow emc in the paper= 5%

Δemc= 1.5%, if the dry mass of the paper= 100g, the paper must loose 1.5 g of moisture. If this moisture goes in air, the RH becomes $100\% \rightarrow$ contraddiction!
Deductio ad absurdum:

Only remaining possibility : RH=65%, the value at which the paper was initially conditioned

In closed system the moisture content of the hygroscopic materials determine the RH and not viceversa!

Situation: newspapers freshly donated to a collection. The newspapers were previsouly stored in a cellar and are possibly contaminated with moulds. They are packed in a semi-closed package to avoid contamination in the museum. Which is the RH within the packages?

Animation 5. RH in Semi-Open Bottles Exposed to High RH (please see "Animation" on Pressbooks for video).

RH in bottles initially at 30% and then closed and exposed to 80% R **RH (%)**

Bottle with hygroscopic materials

bottle with an hygroscopic material

This is the buffering effect of hygroscopic materials in semi-closed systems against RH changes

Experiments (in preventive conservation):

- prepare different type of packages (bags, boxes, with materials of different permeabilities) and measure the RH within the package after inserting newspapers that were previously conditioned at 80% RH
- prepare different types of well-sealed boxes , insert hygroscopic materials and measure the internal RH wile exposing them to different temperatures.