Lesson 1 (2 hours)	Lesson 2 (1 hour)	Lesson 3 (1 hour)	Lesson 4 (2 hours)	Lesson 5 (1 hour)
Objective:	Objective:	Objective:	Objective:	Objective:
Students will explore the	Students will explore the	Students will explore the	Students will explore the	Students will explore
concept of relative	water vapour conservation	sorption isotherm of	buffering effect of hygroscopic	further situations
humidity by investigating	diagram and list possible uses	hygroscopic materials	materials in closed systems by	encountered in
the equilibrium between			analysing experimental results	conservation: the
liquid water and water			on the RH and T within a	packing of materials
vapor in a closed plastic			microclimate vitrine	conditioned at an RH
bottle				different from the RH in
				the environment and
				the buffering effect in
				semi-closed systems.
Vocabulary:	Vocabulary: Water Vapor	Vocabulary: sorption	Vocabulary: buffering effect	Vocabulary: semi-
Maxwell-Boltzmann	concentration diagram, closed	isotherm, absorption and	of hygroscopic materials,	closed systems,
distribution, Relative	and inert systems, Tetens	desorption, equilibrium	microclimate vitrines	reductio ad absurdum
Humidity, Absolute	equation.	moisture content (emc),		
Humidity, Saturation				
Concentration,				
Activities/Strategies:	Activities/Strategies:	Activities/Strategies:	Activities/Strategies	Activities/Strategies
1. Model system: 2 L	1. Model system: 2 L	 Individual work: 	1. Case study and group	1. Case study:
plastic or glass	plastic or glass laboratory	definition of emc and	work "microclimate	packing of materials
laboratory wide mouth	wide mouth bottle	calculation in	vitrine"	conditioned at a
bottle	2. Group work: the RH	different cases	2. Group work: Based on	different RH than
2. Video of	prediction in closed and	2. Frontal lecture:	T measurements (excel	the environment
observational	inert spaces subjected to	Shape of the sorption	sheet) and initial absolute	2. Reductio ad
experiment results:	temperature changes	isotherm for different	humidity, prediction of RH	absurdum
increase of RH in the	3. Group work: the RH	materials	values if the microclimate	3. Conclusion: in
bottle after a small	prediction in closed and	3. Frontal lecture:	would be empty	closed system the
beaker with water is	inert spaces subjected to	swelling, shrinking	3. Group work: with	relative humidity is
inserted.	temperature gradients	and capillary water	measured absolute and	determined by the
3. Group work:	4. Individual work:		relative humidity	moisture content of
develop hypotheses for	creating a datasheet with			

the increase of the RH and possible testing experiments 4. Class Discussion on the hypotheses and test experiments. 5. Example of hypotheses: reaction, bond-breaking. 6. Video: Example of test experiment: measurement of RH increase in a desiccator with liquid water but under vacuum. Bond breaking hypothesis can be retained. 7. Observational experiment: simulation of velocities of 4 same mass particles initially with same velocities (Collision Lab at PhET) 8. Group discussion: Expected distribution of velocities of the water molecules in liquid water. 9. GIF Simulation of 2-D collisions and Maxwell Boltzmann distribution

the Tetens equations (excel or google sheet) for the calculation of the saturation concentration 5. Group work: inert spaces: mixing air masses at different humidities. Graphical and mathematical solutions. 4. Group work: Formulation of hypothesis and test experiment for the observed data in the microclimate vitrine 5. Group work Quantitative estimation 6. Work in pairs: comparison of the moisture content of equal volumes of wood and air 7. Frontal lecture: temperature dependency of the sorption isotherm (with peer instruction) 8. Graphical and mathematical solution for the prediction of the Rh in a closed system with hygroscopic materials and subjected to T changes

the hygroscopic materials 4. Observational experiment: RH increase in semiclosed systems containing or not hygroscopic materials 5. Hypothesis and test experiments 6. Preparation for measurements and interpretation in real cases

10. Definition of				
evaporation rate based				
on the bond breaking				
hypothesis				
11. Definition of				
saturation				
concentration when				
evaporation rate =				
condensation rate				
12. Definition of				
absolute humidity and				
relative humidity				
Materials and technology:	Materials and technology:	Materials and	Materials and technology:	Materials and
- Wide mouth plastic	 Prints of Water vapor 	technology:	 Datasheet (e.g. Excel 	technology:
bottles or glass jars,	concentration diagram	 Prints of sorption 	or google sheet)	- Videos of
volume 1 or 2 L	 Datasheet (e.g. Excel 	isotherm	 Measured data in the 	experimental
- little beakers	or google sheet)		microclimate vitrine	results
- RH/T datalogger (if			 Prints of sorption 	Measurements in real
experiments are to be			isotherm at different	<u>cases:</u>
performed)			temperatures	- Different plastic
- videos of				foils to pack
experimental results				materials
<u>Optional</u>				 Different types
- Desiccators				of boxes (isolated or
- Vacuum pump				not)
 plastic bottles with 				- Hygroscopic
small computer				materials (e.g.
ventilators				newspapers)
- Salt solutions				conditioned at high
				RH and conditioned
				at environmental
				RH.

		 Small RH/T dataloggers