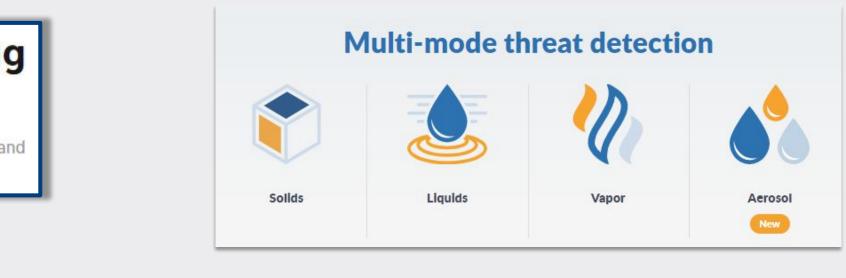

FORENSIC TOXICOLOGY: FROM CRIME SCENE TO VIRTUAL LAB

MODULE 1 Chapter 3: OPIOIDS

DISPENSION'S BIOMETRIC OPIOID VENDING MACHINES: Canada-Wide Rollout



Broward Sheriff's Office Unveils Newest Drug Detection Devices

Called MX 908, the devices can be used in multiple places that include the field, while processing inmates and during traffic stops

Dispension has created the Verified Identity Dispenser (VID) – a platform that uses access control software and tamper-resistant hardware to provide contactless hydromorphone pills to replace heroin.

Opioid overdoses have claimed over 15,000 Canadian lives since January 2016.

TABLE OF CONTENTS

INTRODUCTION TO OPIOIDS

What are Opioids and where do they come from?

OPIOID EFFECTS ON THE BODY

How Opioids affect different parts of the body

HISTORICAL & CURRENT USES Ancient and current uses of Opioids (Opium Wars)



PHARMACODYNAMICS OF OPIOIDS

Absorption, Distribution, Metabolism, Excretion

EXTRACTION OF OPIOIDS Processing and extraction of Opioids

PHARMACOKINETICS OF OPIOIDS How the body processes Opioids

LIST OF REFERENCES

Compilation of all links, videos, and references used

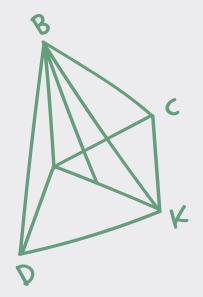
METABOLISM OF OPIOIDS

Phase 1 and Phase 2 Metabolism

OPIOIDS IN BIOLOGICAL FLUIDS

Blood plasma, urine, saliva, oral fluids

CANLII CASE STUDY R. v. Macdonald

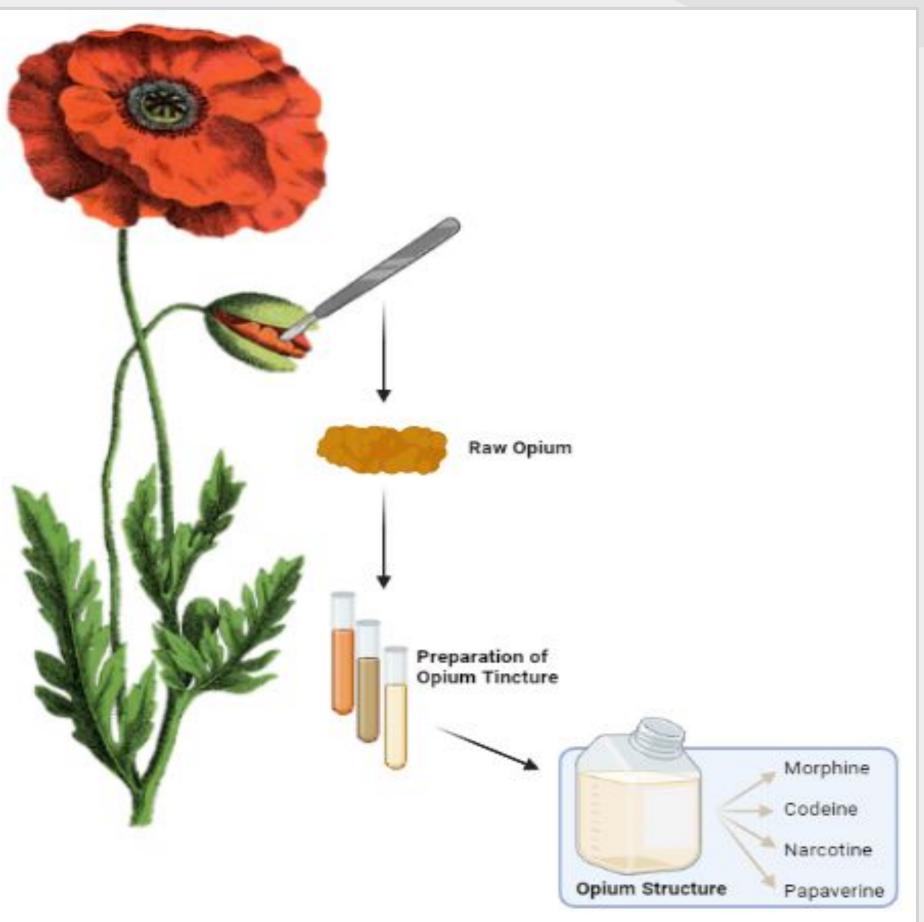


$\begin{array}{c} \uparrow \times H \\ H - C - H \\ \downarrow H \\ H \end{array}$

INTRODUCTION TO OPIOIDS

What are opioids? Overview of Common Opioids

Ð

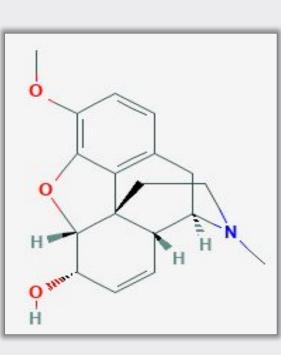

INTRODUCTION TO OPIOIDS

WHAT ARE OPIOIDS?

"**Opioid**" is a term used to characterize the entire family of opiate drugs, including **natural**, **semi-synthetic**, and **synthetic** drugs.

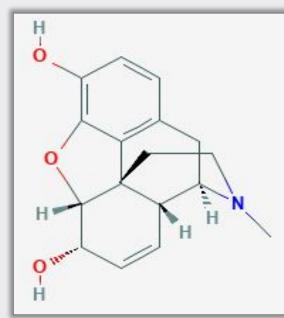
Similar to opiates, **<u>opioids</u>** are produced and used most commonly to treat pain.

Opioids exist in both *licit* and *illicit* forms, either consuming them for medical or non-medical purposes. Since these drugs cause feelings of pleasure and a 'high,' they are highly addictive and can cause long-term drug addictions.


Created with **BioRender.com**

OVERVIEW OF COMMON OPIOIDS

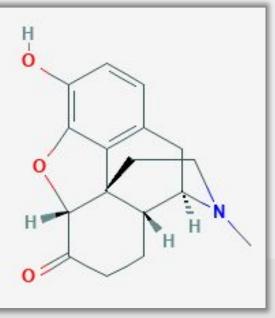
Currently, hundreds of opioids exist in the medicinal and illegal markets. Of these, the most common opioids used and misused are prescription opioids mixed with synthetic chemicals to form the most potent and addictive compounds. Eight of the most used & misused opioids are listed below with their chemical structures:


CODEINE

Opiate and prodrug of morphine used for treating pain

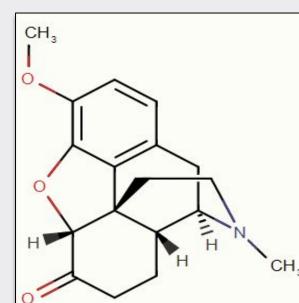
MORPHINE

Pain medication of the opiate family found naturally in the poppy plant

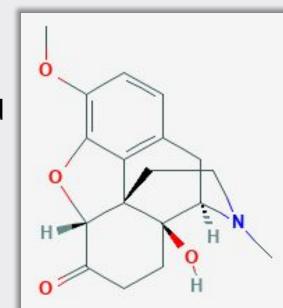


OXYCODONE

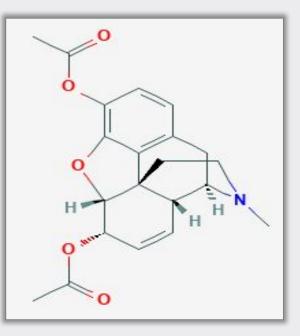
opioid for the treatment of moderate to severe pain


HYDROMORPHONE

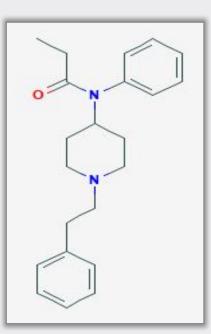
Opioid analgesic used to treat moderate to severe pain


HYDROCODONE

Opioid agonist used as an analgesic and antitussive agent

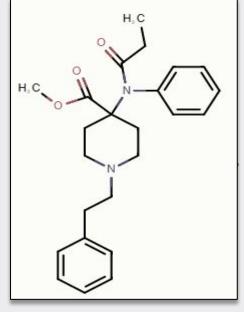

Powerful opioid used as a pain medication and for anesthesia, illicitly used as a recreational drug

- Highly addictive
- medication used



HEROIN

Highly addictive illicit drug made from morphine that is part of of the opioid drug class



FENTANYL

CARFENTANIL

Popular synthetic opioid analgesic (fentanyl analogue), one of the most potent opioids in the world

Canadian Drug Schedule Classification: Opioids

In Canada, opioids including hydrocodone, hydromorphone, oxycodone, oxymorphone, and fentanyls (& their salts / derivatives) are classified under Schedule I in the Controlled Drugs and Substances Act.

Drug overdoses are killing hundreds in Saskatchewan. (Dan Zakreski/CBC)

By definition, Schedule I drugs:

- require a prescription for sale;
- professional intervention; and
- pharmacy legislation

are provided to the public by a pharmacist following diagnosis and

are controlled in a regulated environment as defined by provincial

This article describes the differences between opioids and the effects of opioid-based painkillers on the human brain.

Check out out the video embedded in the article linked here!

Opioid related

doubled

deaths

from 1991

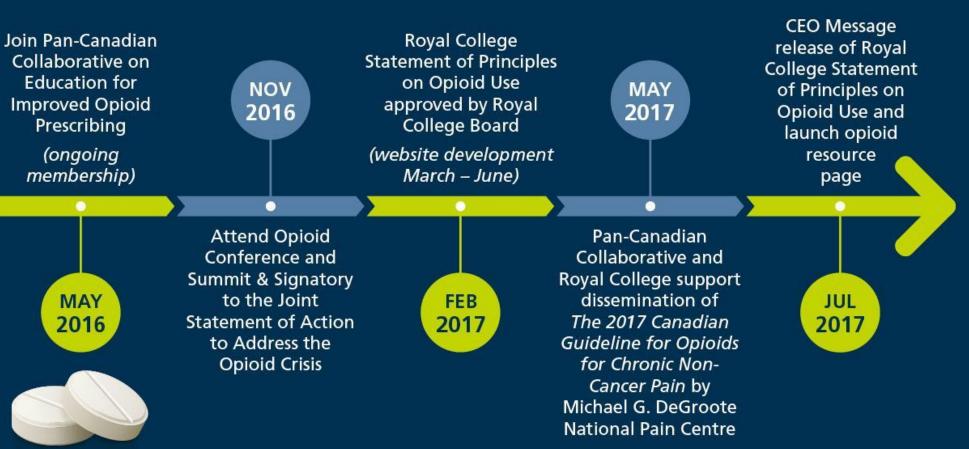
to 2004

Dhalla et al, 2009

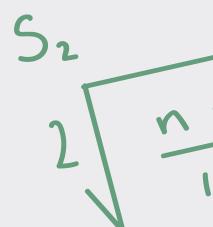
 \square

15-29% tititit of Canadians experience chronic pain

Fischer & Argento, 2012


01

Canada ranks 7nd only to the U.S. in per capita cosumption of prescription opioids


Family physicians and dentists accounted for **- 0/** 0 of all opioid prescriptions in Ontario ----from 2014-2015 ÷

A crisis in some **First Nations** communities due to harms

associated with prescription opioids

00

HISTORICAL & **CURRENT USES**

HISTORICAL TIMELINE OF OPIOIDS

Smoking opium was increasing in Portugal, laudenaum was created by Paracelsus (mixed with crushed pearls, musk, opium, and alcohol)

1500s

3400 BC

Poppy plants began growing and being cultivated in lower Mesopotamia

1839-1842

OPIUM WAR:

Huge shipments of opium were destroyed, lasted until 1842. Alexander Wood discovered morphine can be injected

The Treaty of Beijing was instrumental in Britain's control of Hong Kong

1860

Use of opioids was gaining traction for medicinally treating pain

1980-1990s

1973

US President Nixon created the Drug Enforcement Administration (DEA), war on opium drugs increased

CURRENT USES OF OPIOIDS

- Today (2021) Canada is currently the second highest consumer of opiates and opiates in the world.
- In 2015, an estimated 2,000 Canadians died from opioid overdoses.

1950s **Synthetic Medicinal Opioids**

02

Synthetic opioids introduced into the prescription market to mimic the uses of natural opiates, including oxycodone, synthetic heroin, and synthetic morphine.

Slow-Release Formulations

1990s

Slow-release opioids for medicinal uses were introduced and commonly prescribed by doctors for pain relief (chronic and acute).

More Opioids **Involved in Opioid** Dependence

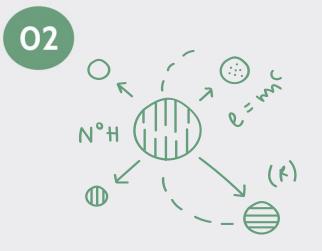
2000s

Among slow-release opioid pills, fentanyl patches, hydromorphone, and OxyContin were made by US-based Purdue Pharma. These drugs were marketed to new medical students and pharmacies as a highly effective painkiller "without side effects."

2007 **Opioid Dependence** Increases

Prescription numbers increased significantly in Canada and the US, including addiction reports and overdose deaths. Later, the truth about OxyContin was revealed (manufacturers knew people taking the drug would become addicted).

2010s **Pharmacies Increase Opioid** Sales


In 2012, Canadian retail pharmacies dispensed almost 19 million opioid prescriptions; In 2013, that number was doubled to more than 30 million, bringing in nearly \$881 million in sales.

No^{*} СН

Opioid Toxicity Rises

2020

From July 2019 to September 2020, a 120% increase in opioid toxicity deaths has been reported in Canada. Most of these death were among males aged 20-49 years old. Fentanyl and its analogues continue to be the main contributors to the crisis.

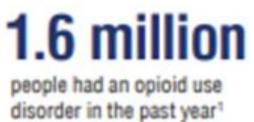
CURRENT GLOBAL OPIOID CRISIS

THE OPIOID EPIDEMIC BY THE NUMBERS

10.1 million

people misused prescription opioids in the past year1

people used methamphetamine


2 million

in the past year1

SOURCES

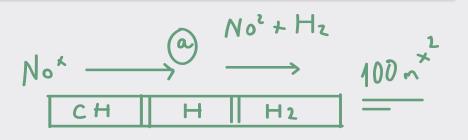
- 1. 2019 National Survey on Drug Use and Health, 2020.
- 2. NCHS Data Brief No. 394, December 2020.
- 3. NCHS, National Vital Statistics System. Provisional drug overdose death counts.

745,000 people used heroin in the past year1

50,000 people used heroin for the first time¹

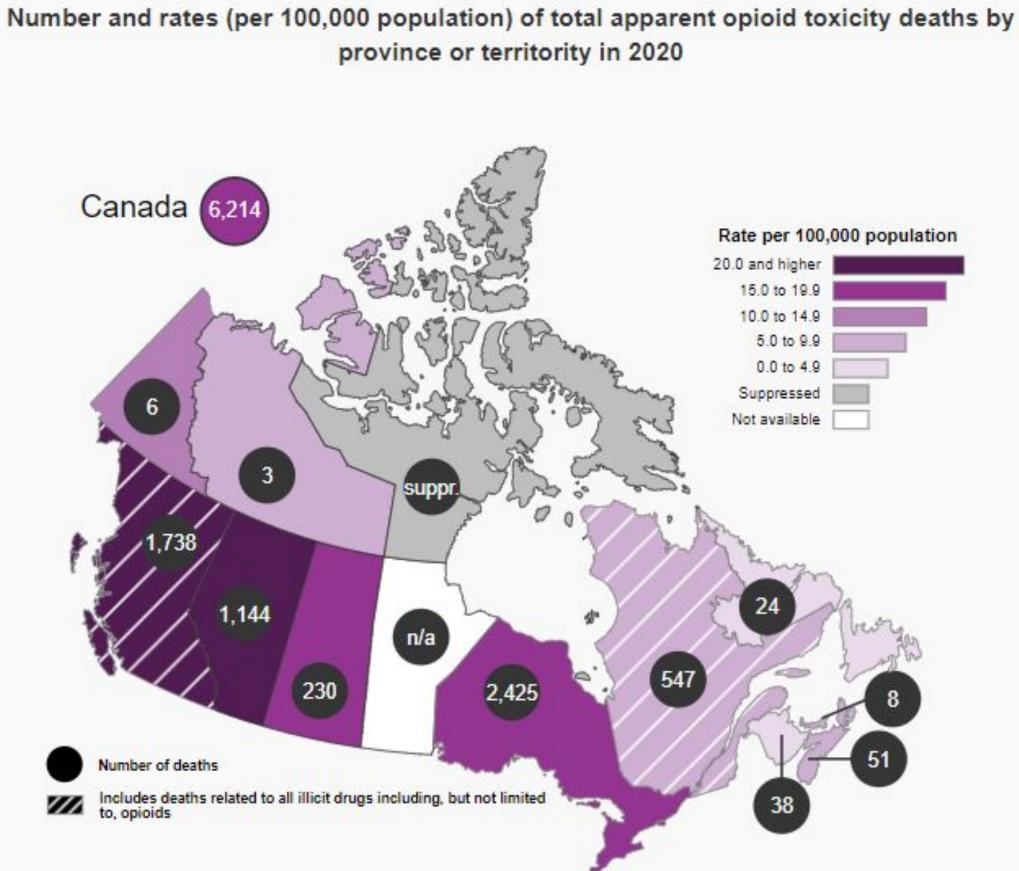
1.6 million

people misused prescription pain relievers for the first time!



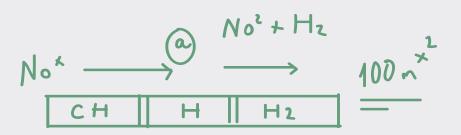
14,480 deaths attributed to

overdosing on heroin (in 12-month period ending June 2020)3


48,006

deaths attributed to overdosing on synthetic opioids other than methadone (in 12-month period ending June 2020)3

CURRENT GLOBAL OPIOID CRISIS

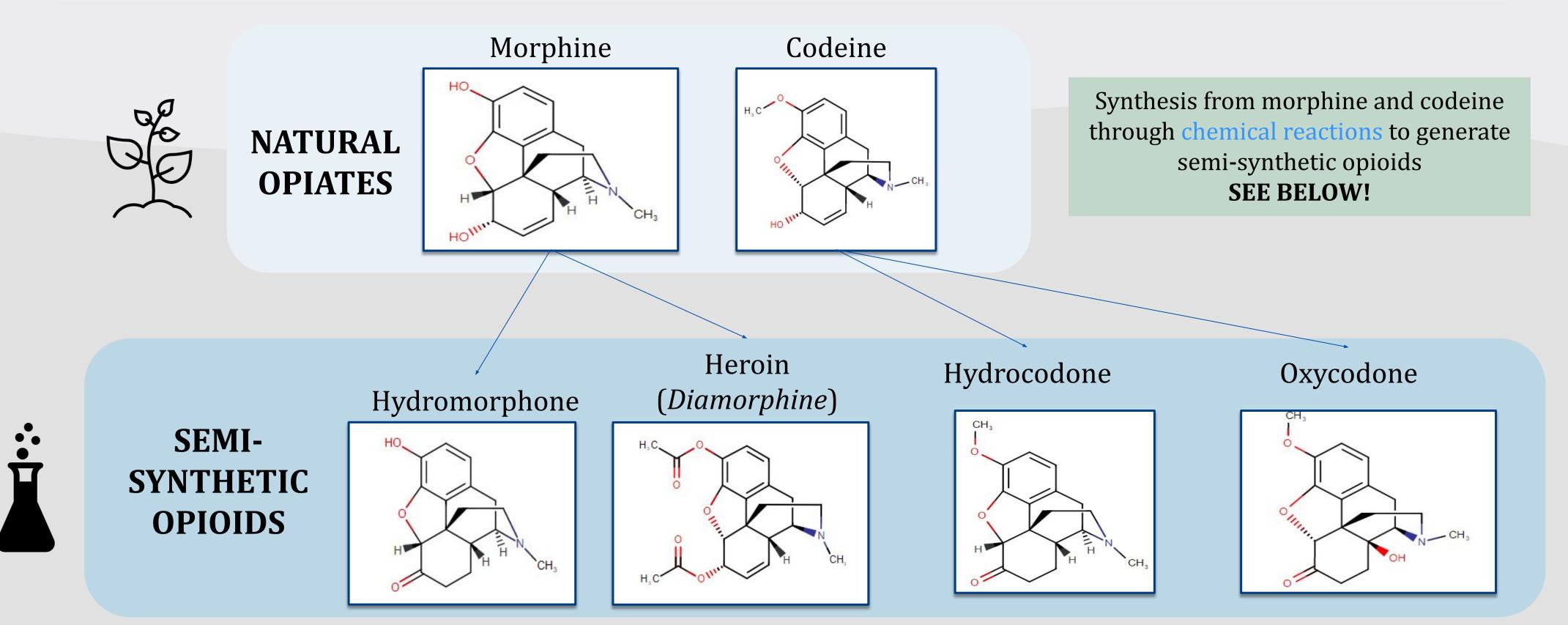


• By 2016, the apparent opioid-related death rates revealed a national public health crisis, where this epidemic affected communities across the country with a opioid-related death rate of **7.9 per 100,000 people**.

• To date, there exists pronounced regional differences.

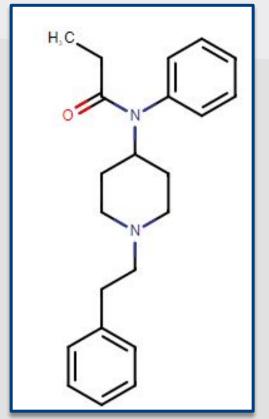
• Follow the link attached to the image to see the **Interactive Map of the Opioid Crisis** from June 2021.

00 03 CLASSIFICATION

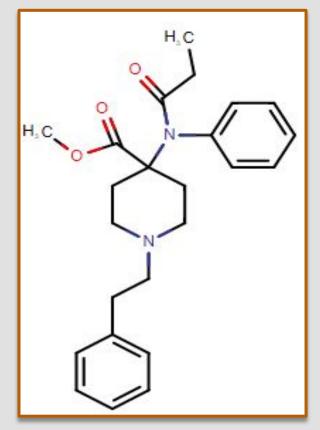

OF OPIOIDS

Natural, Semi-Synthetic, & Synthetic

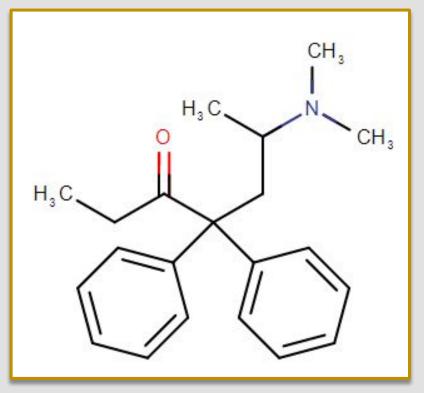
SEMI-SYNTHETIC OPIOIDS: PRODUCTION


Semi-Synthetic opioids are created in labs from the use of natural opiates. Most semi-synthetic opioids emerged from their potent uses as pain analgesics but have been of the most widely misused opioids globally.

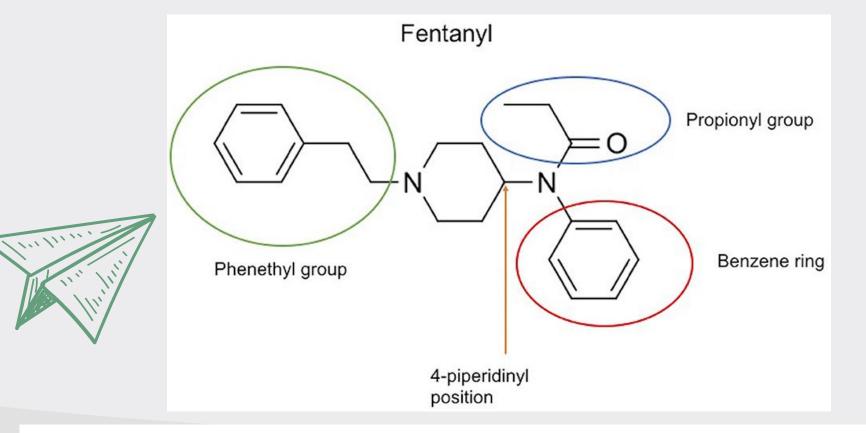
SYNTHETIC OPIOIDS: PRODUCTION


Synthetic opioids are substances synthesized in a **laboratory** that target the brain ANALOGOUS TO natural opioids.

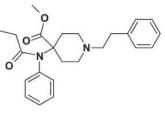
Fentanyl

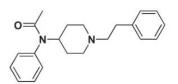

Fentanyl is the most widely misused and addictive drug on the market today, with a potency of 50-100 times stronger than morphine. It is both used in pain relief and illegal street distribution.

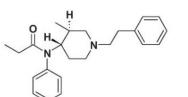
Carfentanil

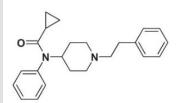


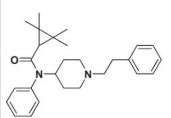
Carfentanil is another extremely powerful opioid and is **10,000** times stronger than morphine, originally created as an elephant tranquilizer. The powder solid form is commonly used in combination with heroin.

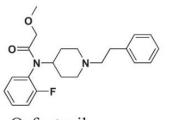

Methadone


Methadone is a synthetic opioid commonly used in medication-assisted treatment for patients addicted to opioids (therapeutic weaning).

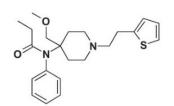

- The chemical parameter log P, the decimal logarithm of the partition coefficient Kp, are useful indications of the lipophilicity of a compound
- Fentanyl and analogs show a log P between 1.5 and 4.3.
- The high lipophilicity enables rapid diffusion through membranes, including the blood-brain barrier.
- The high lipophilicity along with their basic characteristics make these group of drugs candidates to undergo postmortem redistribution.
- Cyclopropyl fentanyl and crotonyl fentanyl, have exactly the same molecular formula, and therefore, the same molecular weight.


Carfentanil

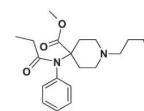

Acetylfentanyl


(3S,4S-configuration)*

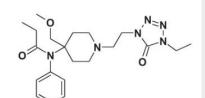
Cyclopropylfentanyl

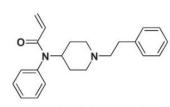


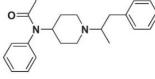
2,2,3,3-Tetramethylcyclopropylfentanyl

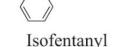


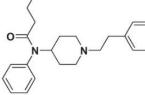
Ocfentani


Front. Pharmacol., 05 April 2019 Front. Pharmacol., 26 October 2018

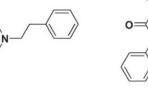

Sufentanil


Remifentanil

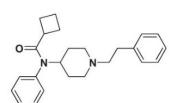

Alfentanil



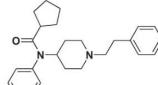
Acryloylfentanyl

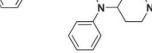


α-Methylfentanyl

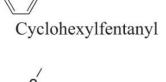


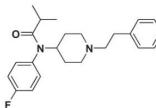
(+)-Trans-3-methylfentanyl (+)-Cis-3-methylfentanyl Butyrfentanyl (3R,4S-configuration)*

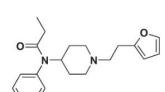



Isobutyrfentanyl

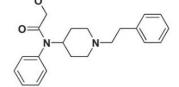
STRUCTURAL ANALOGUES OF FENTANYL

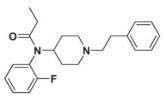


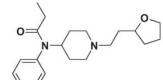

Cyclobutylfentanyl



Cyclopentylfentanyl

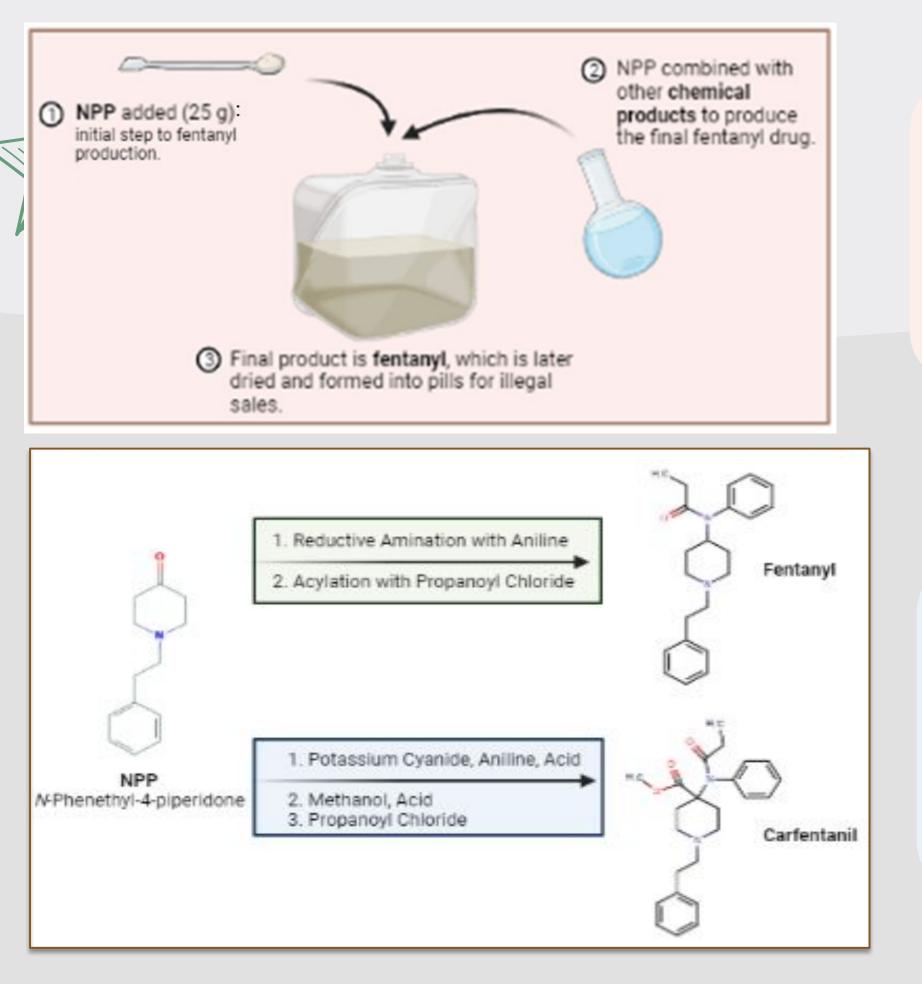



4-Fluoroisobutyrfentanyl



Furanylfentanyl

Methoxyacetylfentanyl



Ortho-fluorofentanyl

Tetrahydrofuranfentanvl

SYNTHETIC OPIOIDS: PRODUCTION

NPP (*N***-Phenethyl-4-piperidone)** is an intermediate used in the production of **fentanyl** and similar illicit opioids. Once combined with other important chemical compounds, pure fentanyl is produced and dried into a powder, where it is sold as a **pain relief** medication or used by illicit means.

When NPP is added to the solution, it can form two drugs:

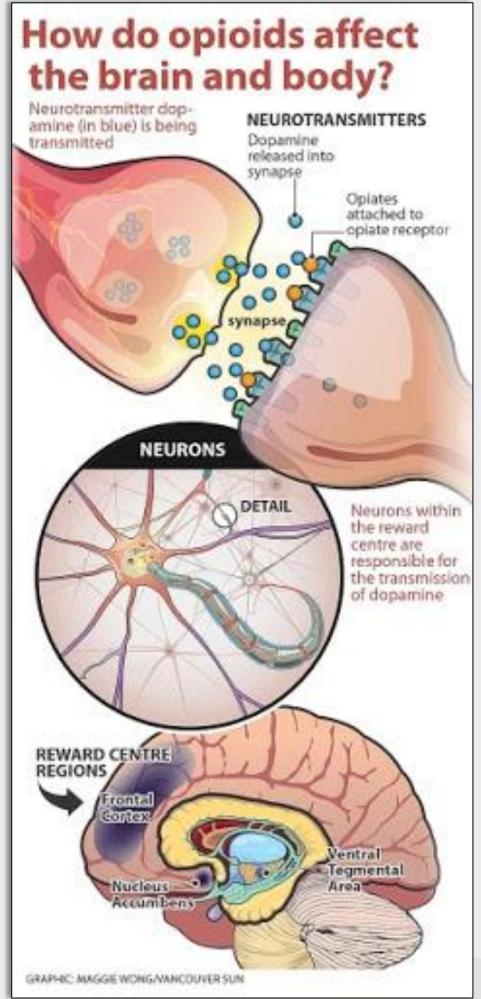
- 1.
- 1.

ALI

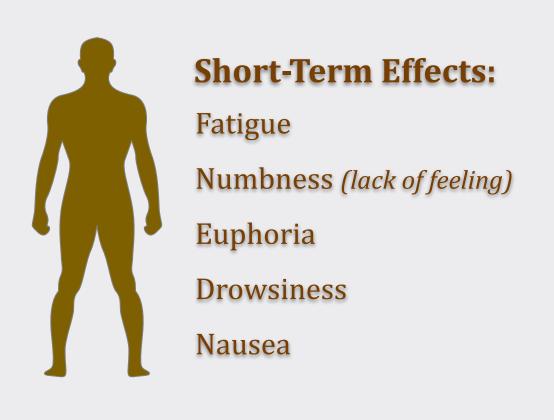
Fentanyl – formed through reductive amination with aniline, followed by acylation with propanoyl chloride.

Carfentanil – formed through the additions of potassium cyanide/ aniline/ and acid; followed by methanol/ acid; and the addition of propanoyl chloride

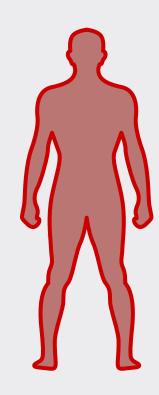
52


00

OPIOID EFFECTS ON THE BODY



OPIOID EFFECTS ON THE BODY


messages to the brain in order to reduce the sensation of pain. figure on the left).

Neurons are responsible for the **reward centre** and are thus responsible for the transmission of positive feelings in the body.

- **Opioids** attach to receptors in the body (brain, spinal cord) to reduce the sending of pain
- The drugs bind to the opioid receptors on neurons in the brain and block the binding of natural dopamine neurotransmitters to induce a much stronger feeling of pleasure (see

Long-Term Effects: Hallucinations Anxiety Depression Hypoxia (lack of oxygen) Hyperalgesia (sensitivity to pain)

OPIOID EFFECTS ON THE BODY

Although opioids are widely used for the analgesic properties for their pain relief, misuse or overuse has serious and severe side effects on the bodily systems, including the **Respiratory**, **Circulatory**, and **Nervous Systems**.

Respiratory System

- Opioids cause respiration to slow and become irregular, leading to hypercapnia & hypoxia
- responses
- brainstem

Circulatory System

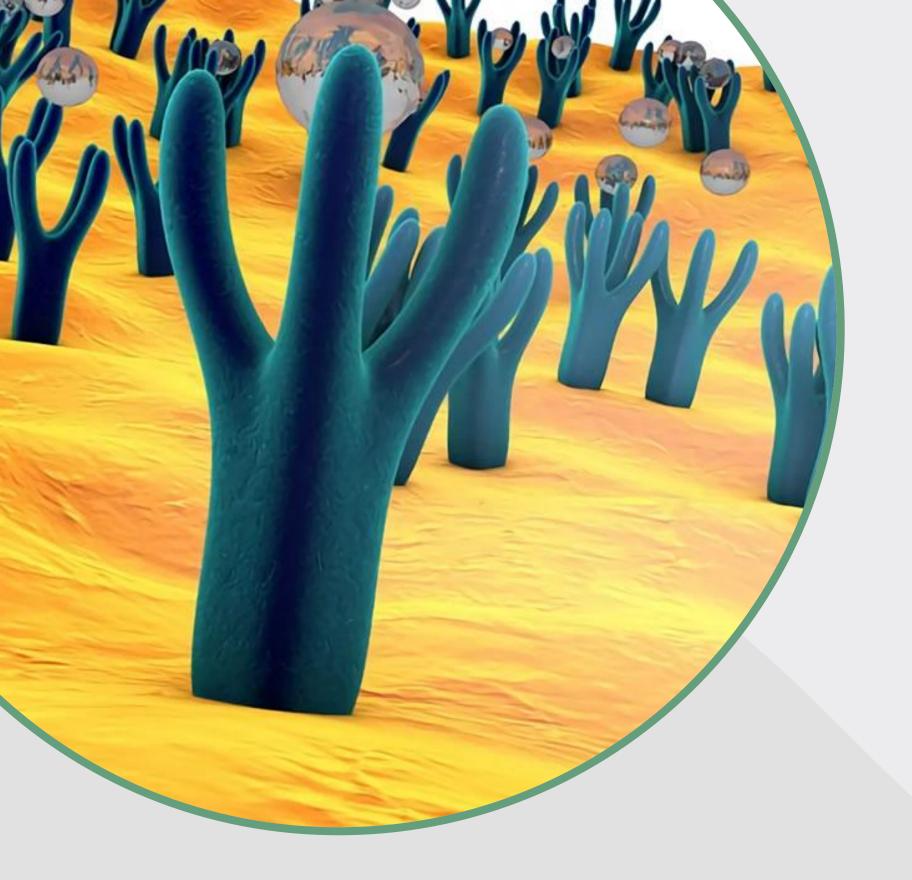
- brain, leading to stroke)
- Chronic heroin injection can cause scars in the blood veins, as well as bacterial infections in the veins & heart valves

Nervous System

- higher pain tolerance, regardless of addiction
- repeated use causes increased concentration of the drug to achieve the same level of pleasure as the first time

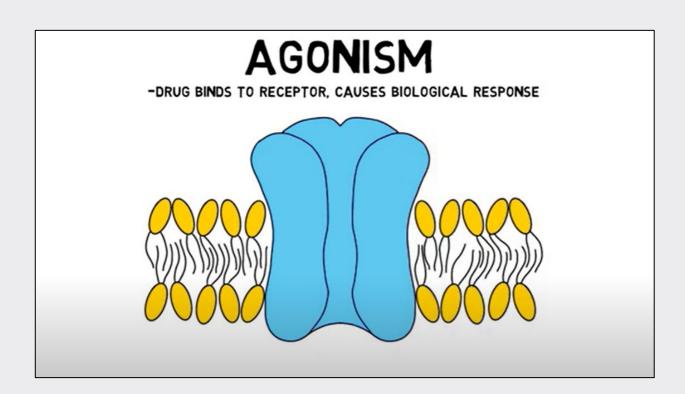
• Role of carotid bodies remains unclear, even though opioid receptors are present there –mediate hypoxic & hypercaphic

• Only few studies have analyzed opioids effects on respiration, most concluding opioids affect the effectiveness of the

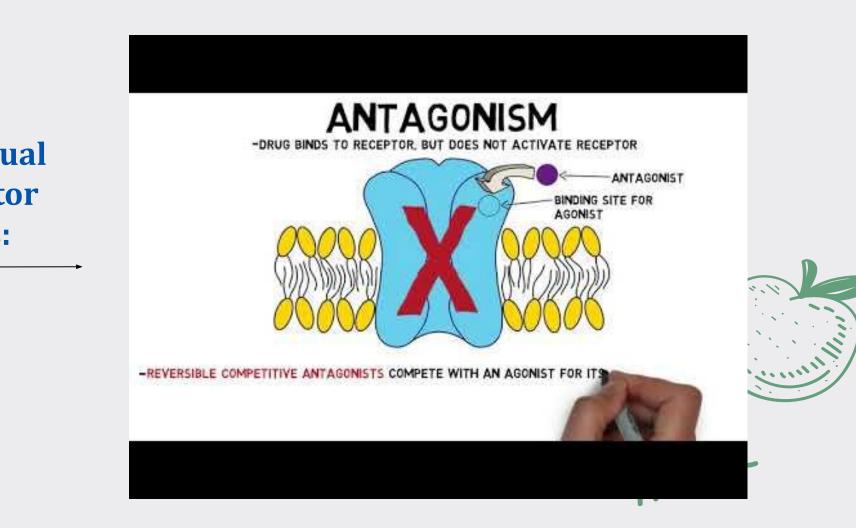

• Opioid users have a 34% increased risk in developing Atrial Fibrillation (AFib): heartbeat quivers & does not move blood correctly from the heart's upper chamber (atria) to the ventricles (increased risk of blood clots in the heart and

• Opioids act on the central nervous system (CNS) to provide pain relief and changes the brain chemistry to allow for a

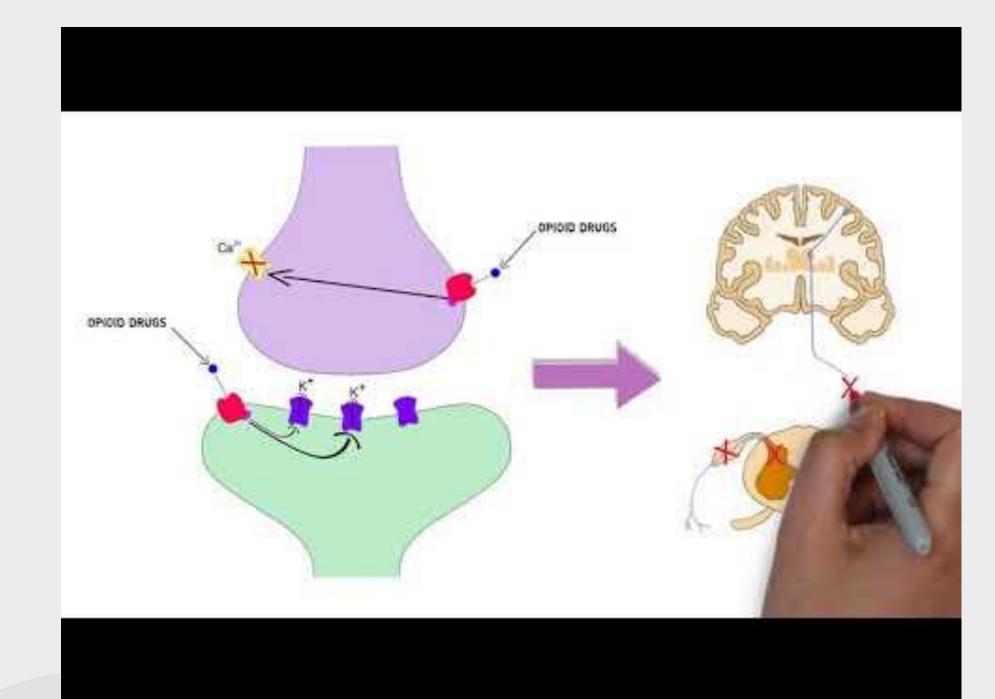
• Once administered, opioids bind to receptors (mu, μ) located in both the 'reward pathway' or the 'pain pathway': **Pain pathway**: pain relief; **Reward pathway**: cause euphoria & release dopamine to create a pleasurable feeling ("*high*"), thus

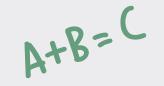

Receptor Binding Classifications Intrinsic Activity

Intrinsic Activity


The relationship between opioid receptor binding and corresponding responses typically fall into 3 categories:

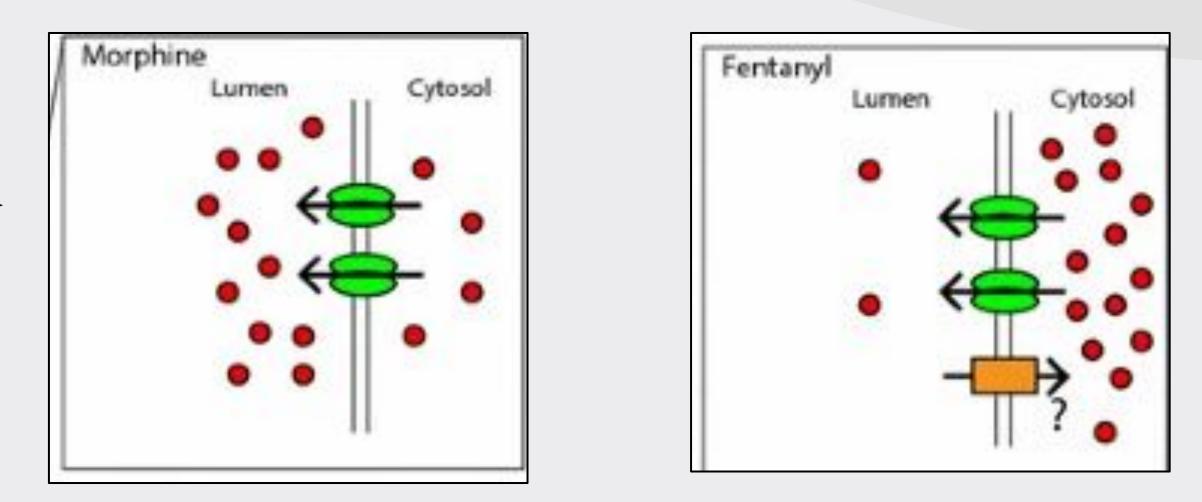
- **AGONIST**: when bound, initiates a physiological response when combined with receptor 1.
- **ANTAGONIST**: when bound, interferes with or inhibits the physiological action of another (agonist) 1.
- 1. **PARTIAL AGONIST**: when bound, activate a receptor but only induce partial efficacy at the receptor compared to a full agonist


Watch this video for a visual representation of Receptor **Binding and responses:**


Pharmacodynamics studies drug-induced biochemical, physiologic, and molecular effects on the body and involves the drug binding to the receptor. This helps describe the relationship between dose and response, with the pharmacologic response depending on the drug binding to the target, among other factors. The concentration of a drug at the site of the receptor influences the effect the drug has on the body.

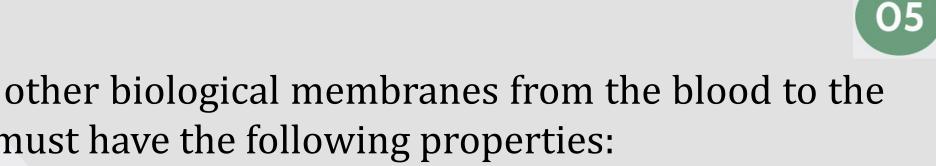
Overview of opioid binding to receptors on the postsynaptic nerve cell, thus reducing the sensation of pain.

Check out this video!

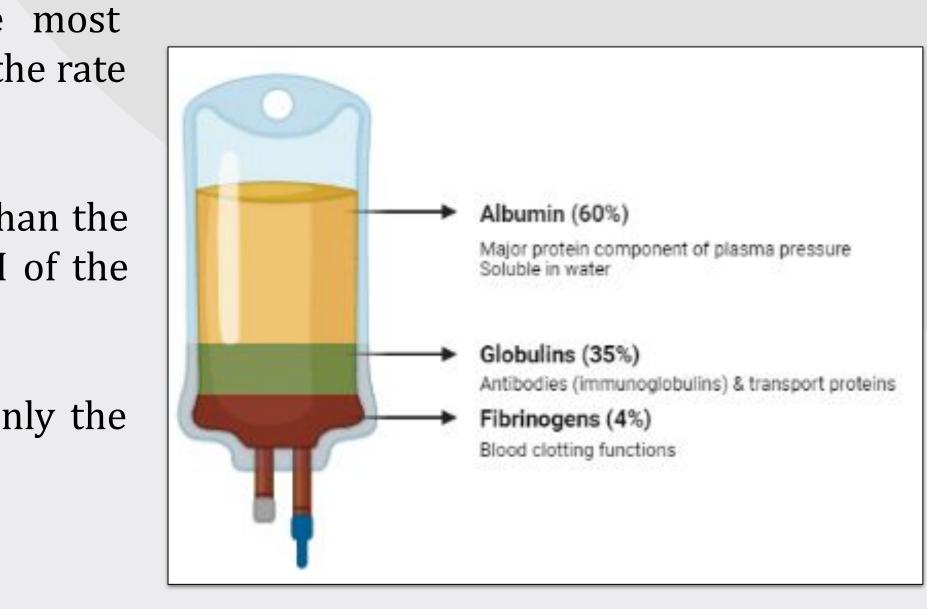

To reach effector sites in the CNS, opioids must cross the BBB and other biological membranes from the blood to the receptors on neuronal cell membranes. To cross the BBB, opioids must have the following properties:

- Proper molecular size
- **Correct** ionization states
- Lipid solubility
- Protein binding

Diagram showing schematic of selected opioids penetrating the blood-brain barrier.


The ability of the BBB to act as a permeable barrier is reliant on transport proteins in the membrane (green)

Red dots represent specific drug molecules


Fluids and Barriers of the CNS, 2017, 14, 32. volum

A diagram indicating the relative brain penetrance of selected opioids.

Of the properties, **lipid solubility** and **ionization** are the most important in determining the rate of access to the CNS and thus, the rate of receptor binding.

- Nonionized drugs: 1000-10,000 times more lipid soluble than the ionized form (depends on the pKa of the opioid & the pH of the environment)
- Plasma protein binding affects opioid distribution since only the unbound (free) drug is able to diffuse across membranes
 - Major plasma proteins opioids bind to include:
 - Albumin
 - α1-acid glycoprotein

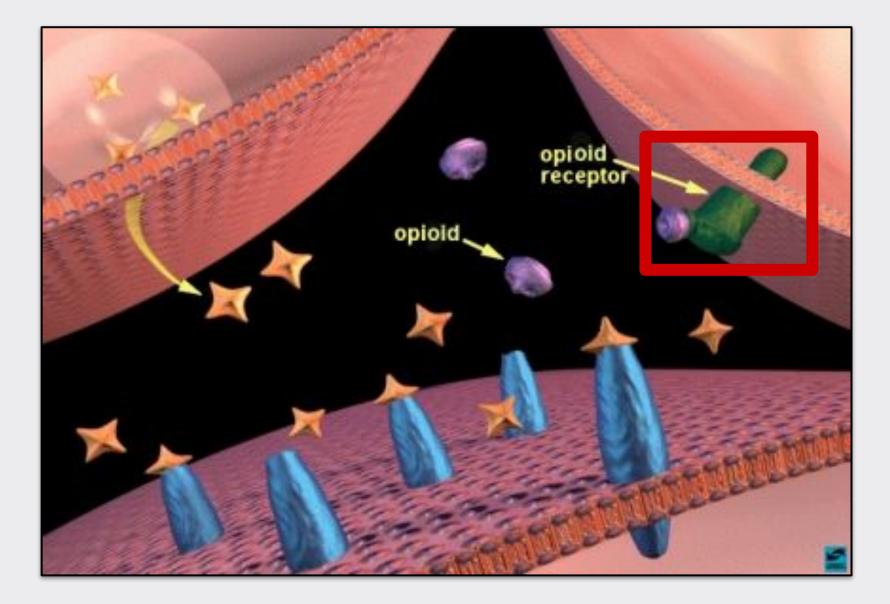
Created with **BioRender**

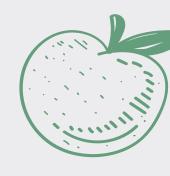
Properties of pharmacodynamics includes receptor classification, mu receptor binding, & intrinsic activity (agonists/antagonists).

Receptor Classification

Based on their endogenous ligands that bind:

- **Mu (MOR):** euphoria, stress-coping, most important and common opioid 1. receptor
- **Delta (DOR):** anxiolytic, positive effect 1.
- **Kappa (KOR):** dysphoria, stress, negative effect 1.

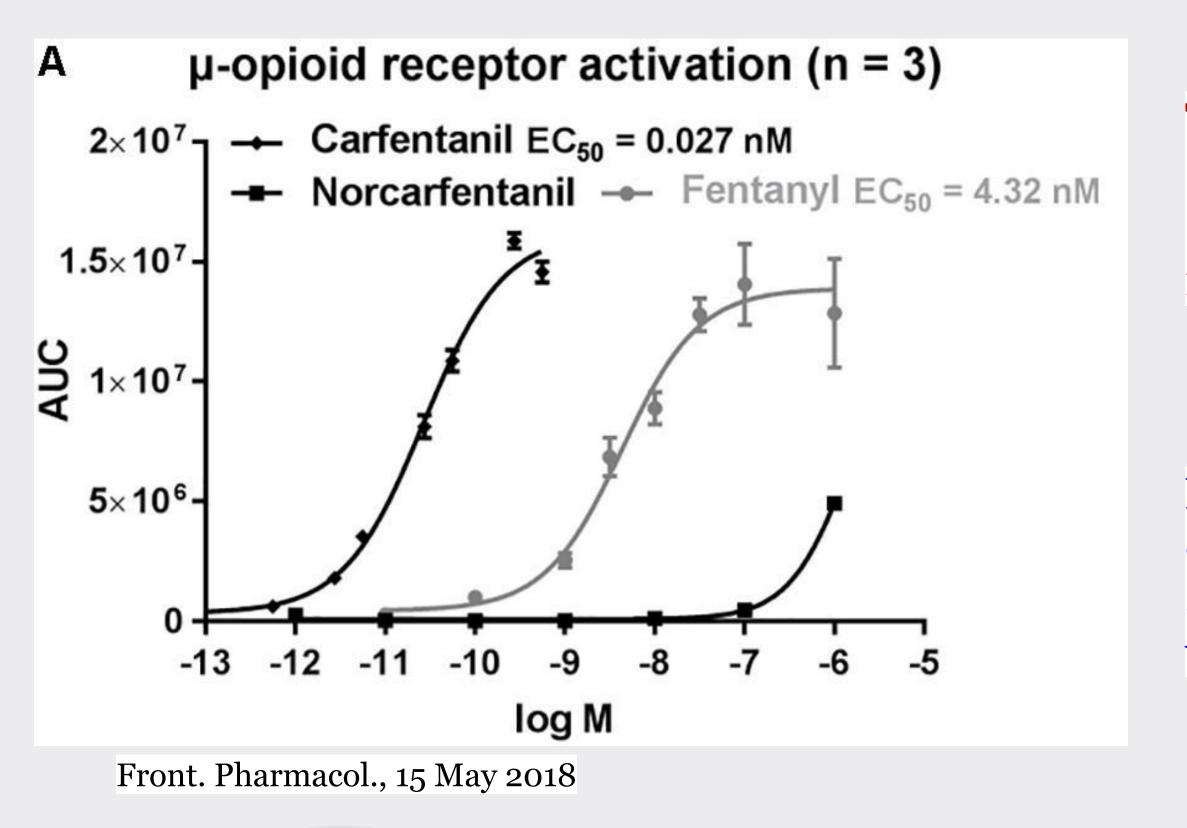

Receptor Binding: *mu*


The *mu* opioid receptor serves two functions:

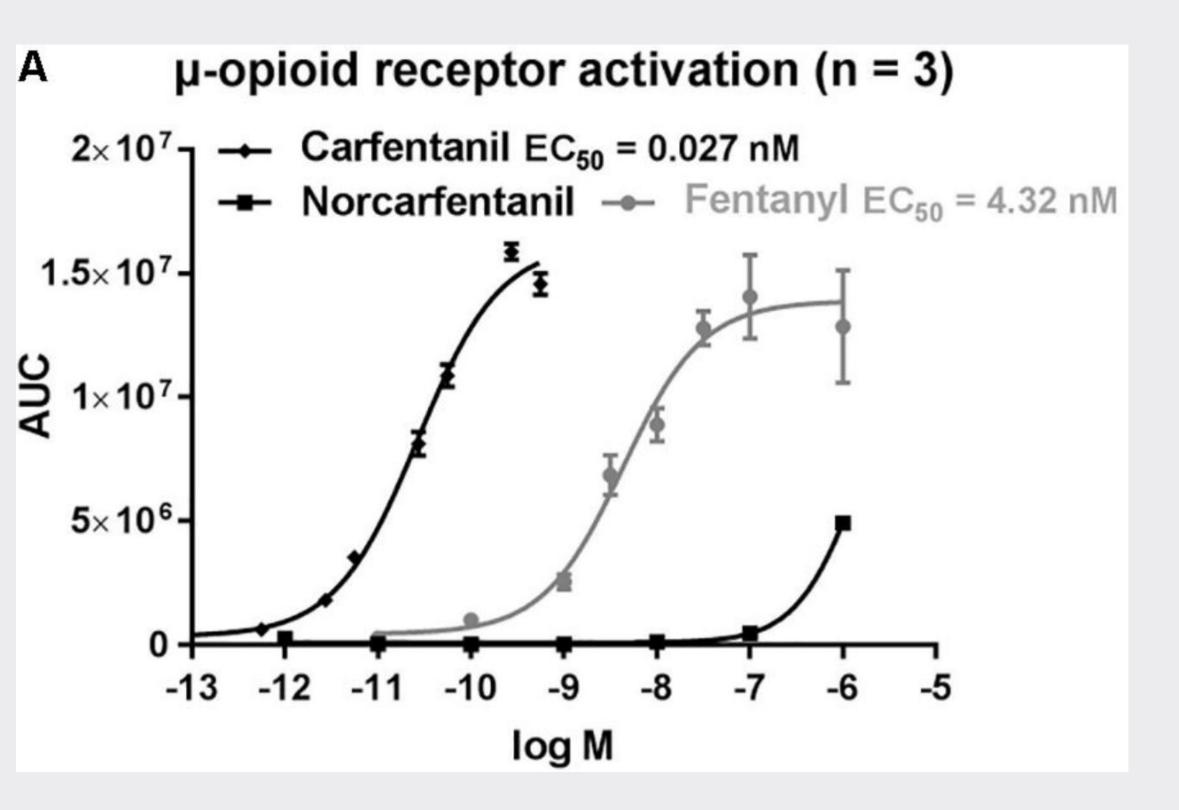
- **Recognition:** only the L-isomers of opioids exhibit analgesic activity 1.
- 2. **Biological activity:** the strength of the binding (affinity) correlates with analgesic potency

(ex.) Binding affinities of morphine and fentanyl have been calculated using the equilibrium inhibition constant (K_i) (the lower the value, the higher the binding affinity for the mu receptor):

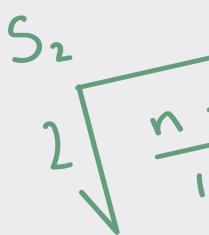
> **Fentanyl** = 1.6 nM Morphine = 5.7 nM



05


μ-opioid receptor activation by fentanyl, carfentanil and norcarfentanil

The concentration-dependent curves EC50 values were determined for carfentanil [EC50 = 0.027 nM] and fentanyl [EC50 = 4.32 nM] as a measure of relative potency


Norcarfentanil, the major metabolite of carfentanil, was only able to generate low opioid activity at a high concentration $(1 \mu M) = not$ very potent

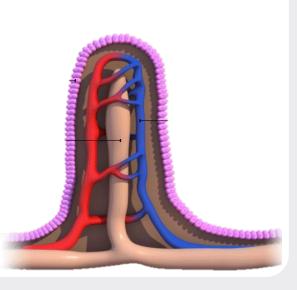
QUESTION #5

A+B=C

00

PHARMACOKINETICS **OF OPIOIDS**

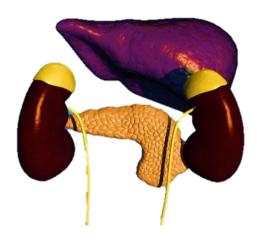
Absorption Distribution Metabolism Excretion



OVERVIEW OF PHARMACOKINETICS

06

ABSORPTION


Refers to the way a drug is absorbed from a pharmaceutical chemical formulation into the bloodstream

METABOLISM

Chemical reactions that break down drugs into chemical compounds that are easier to eliminate in the body (termed "*metabolites*")


DISTRIBUTION

Reversible transfer of a drug from one location in the body to another *(ex.) fat tissues to gut lumen*

EXCRETION

Process of removing a drug and its metabolites from the body *(ex.) through the kidneys*

A+B=L


ABSORPTION OF OPIOIDS

06

The proportion of opioids (active drug) that enters the body systemically is defined as "**bioavailability**", which is partially attributable to the first pass metabolism.

First pass metabolism occurs when the drug is metabolized directly by the liver from the GI tract before it reaches the bloodstream, thus avoiding **absorption** and affecting the rate of absorption.

Opioid (Route)	Absorption	Distribution	Metabolism		Excretion	
	BIOAVAILABILITY	Vd (L/kg)	Major Metabolism Enzyme(s)	Active Metabolite	Urine (%)	Half- (hou
Codeine (PO)	53	3-6	CYP3A4 & 2D6	Morphine	90	3
Fentanyl (TDS)	N/A	4-6	CYP2D6	None	75	20-
Oxycodone IR (PO)	60-87	2.6	CYP3A4 & 2D6	Oxymorphone	19-64	7-
Morphine IR (PO)	<40	4	UGT	M6G	90	2-

EXAMPLE: <u>OXYCODONE</u>

- Oxycodone acts directly on a number of tissues unrelated to its pain relief with a bioavailability of 60-87% when ingested orally
- Compared to codeine (53%), the bioavailability of oxycodone is significantly higher, suggesting it has an increased potency

A+B=L

DISTRIBUTION OF OPIOIDS

06

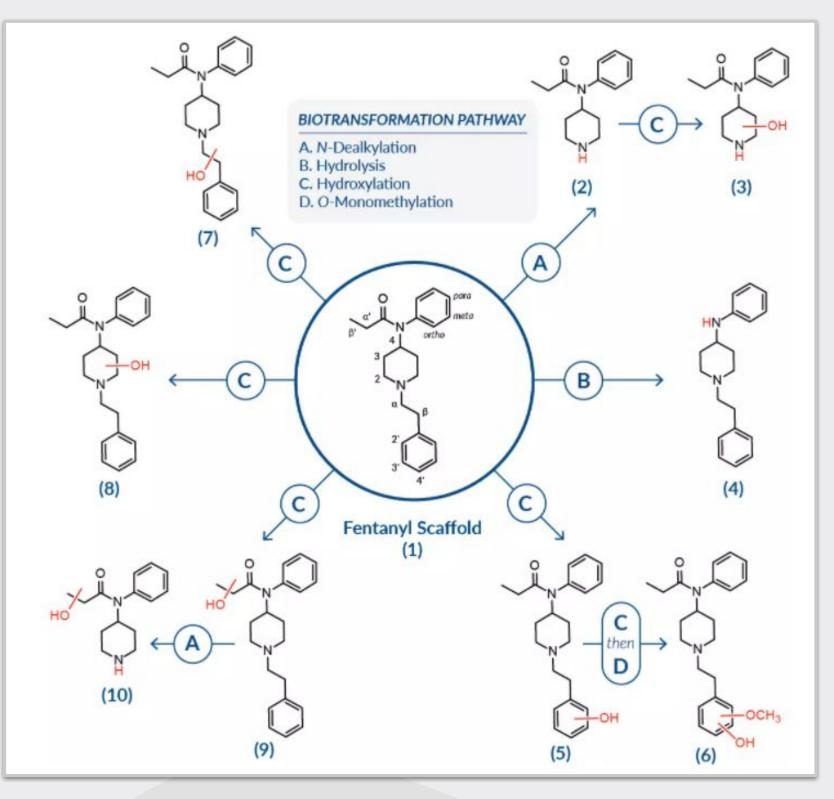
- **Distribution** refers to the movement of a drug between the blood and several tissues throughout the body, often described in terms of **volume of distribution (Vd)**.
- Opioids with a higher Vd value (i.e., more able to cross the BBB) are usually more lipophilic and more likely to distribute faster/more in & out of the BBB, with quicker and shorter pain relief.

Opioid (Route)	Absorption	Distribution	Metabolism		Excretion	
	BIOAVAILABILITY	Vd (L/kg)	Major Metabolism Enzyme(s)	Active Metabolite	Urine (%)	Half- (hou
Codeine (PO)	53	3-6	CYP3A4 & 2D6	Morphine	90	3
Fentanyl (TDS)	N/A	4-6	CYP2D6	None	75	20-
Oxycodone IR (PO)	60-87	2.6	CYP3A4 & 2D6	Oxymorphone	19-64	7-
Morphine IR (PO)	<40	4	UGT	M6G	90	2-

f-Life urs) -27

EXAMPLE:

<u>Codeine</u> has a **Vd of 3-6 L/kg**, showing significant distribution of the drug into tissues


<u>Fentanyl</u> has an **intravenous Vd of 3-8 L/kg** and an oral Vd of 25.4 L/kg.

Fentanyl is classified as a fully synthetic opioid that can cross both the BBB and placenta, making it one of the most addictive and potent synthetic opioids to date. A+B=L

METABOLISM OF OPIOIDS

The **metabolism** is the process of the chemical modifications of the drug into different metabolites for easier elimination. This process occurs in two phases:

Phase 1 Metabolism (chemical reactions like oxidation, reduction, hydrolysis, CYP pathway), and **Phase 2 Metabolism** (reactions characterized as conjugation reactions catalyzed by transferase enzymes).

06

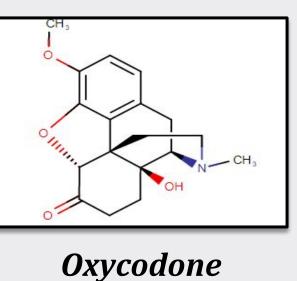
This figure describes the proposed routes of metabolism for **fentanyl** & **designer (synthetic) fentanyls.** The fentanyl scaffold is in the centre of the figure and clearly identifies the different transformation pathways the drug can undergo, including:

Most of these metabolites have the potential to undergo further transformations to yield additional metabolites of fentanyl.

Extensive metabolism of each individual opioid is described later in this module.

A. N-DealkylationB. HydrolysisC. Hydroxylation*D. O*-Monomethylation

06 **EXCRETION OF OPIOIDS**


The majority of opioids are excreted as metabolites through the kidneys (methadone is excreted in the bile). Each opioid has its own elimination half-life ($T\frac{1}{2}$), which dictate the clearance rates of each drug. In general, when opioids are given at a steady state, opioids reach a steady state after four half-lives.

Opioid (Route)	Excretion			
	Urine (%)	Half-Life (hours)		
Codeine (PO)	90	3		
Fentanyl (TDS)	75	20-27		
Oxycodone IR (PO)	19-64	7-9		
Morphine IR (PO)	90	2-4		
Hydrocodone IR (PO)	26	3.3-4.4		
Methadone (PO)	<10	7-59		

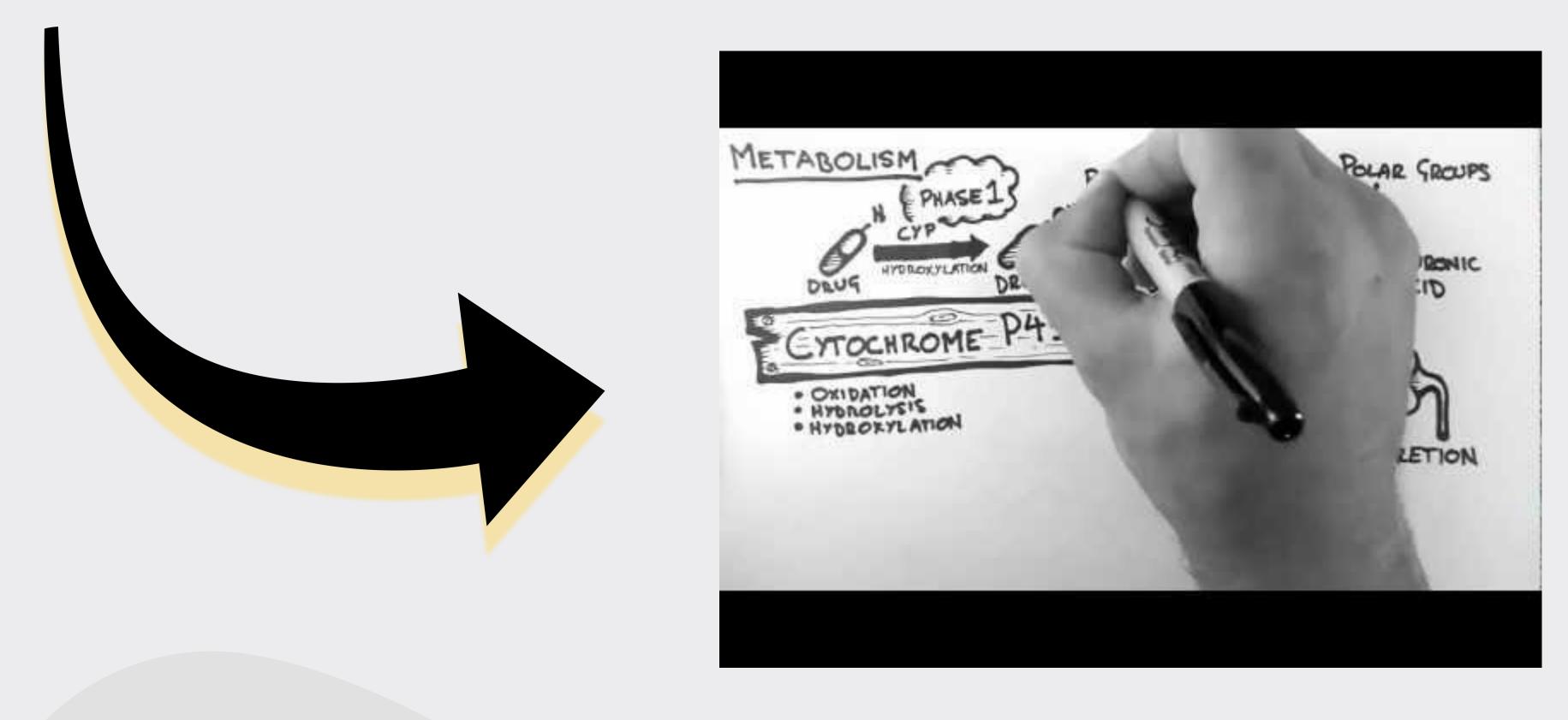
EXAMPLE:

<u>Fentanyl</u> has an excretion value of 75% with a $T\frac{1}{2}$ of 20-27 h. <u>**Oxycodone**</u> has an excretion value of 19-64% with a $T\frac{1}{2}$ of 2-4 h.

This shows that depending on the structural composition of the opioid drug, its clearance rates are dependent on how 'excretion-ready' its metabolites are in the body.

Fentanyl

00

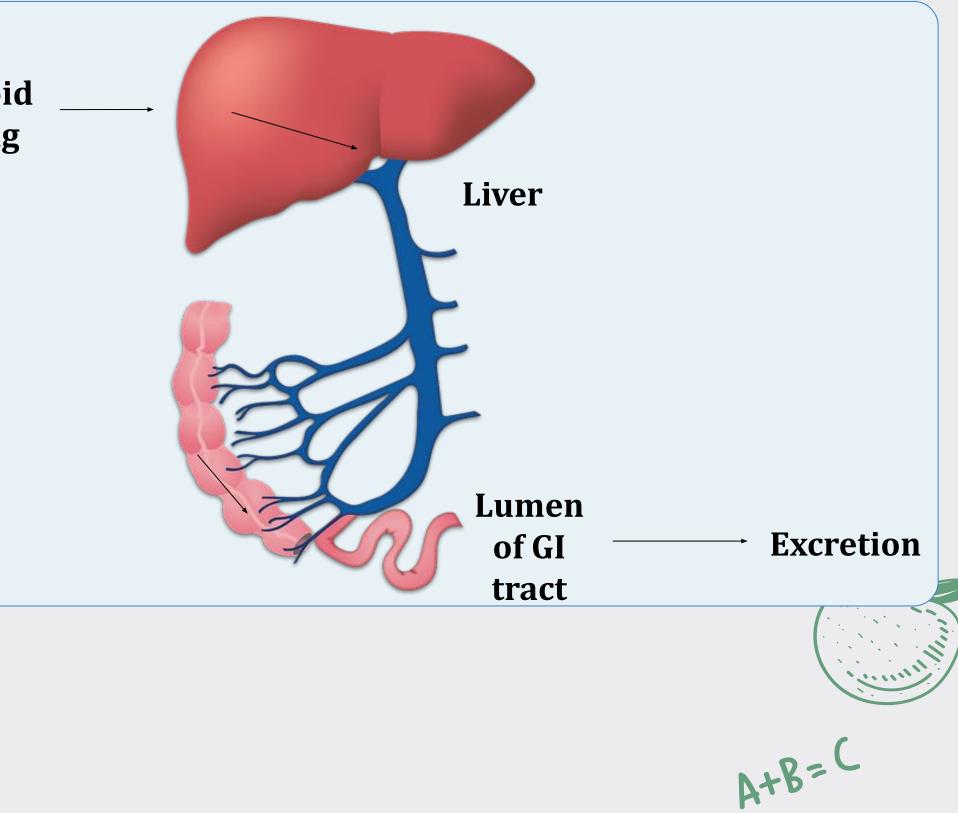

METABOLISM OF OPIOIDS

Phase 1 & Phase 2 Metabolism

07 **METABOLISM OF OPIOIDS**

To understand the biochemical aspects of opioid metabolism further, **watch the video** below. NOTE: Keep an eye out for specific examples used in the video, as they will be useful for the rest of the lesson!

A+B=L


METABOLISM OF OPIOIDS

 Metabolism: process of biotransformation where drugs are broken down for elimination purposes

07

- Most opioids undergo first-pass metabolism in the liver before entering systemic circulation (i.e., bloodstream)
 - **First-Pass Metabolism:** reduces bioavailability of the drug
 - Metabolism of opioids take place in the liver, creating enzymes for the breakdown of the compounds

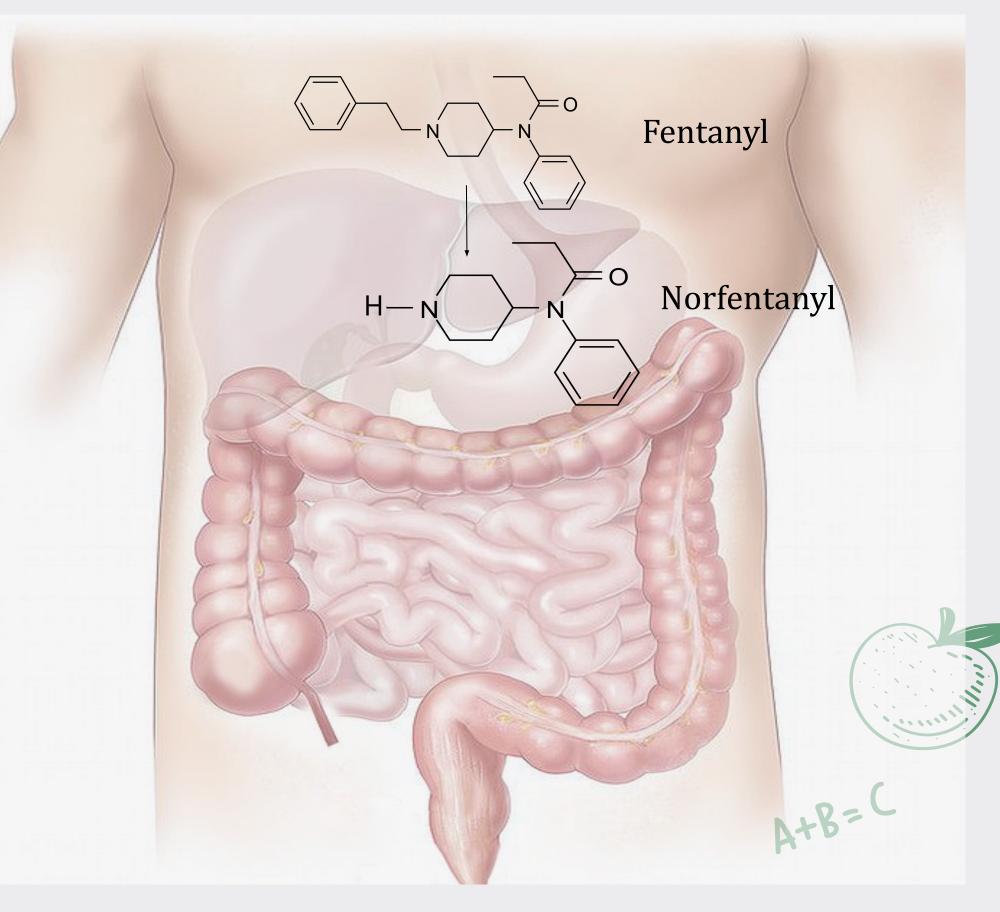
Opioid Drug

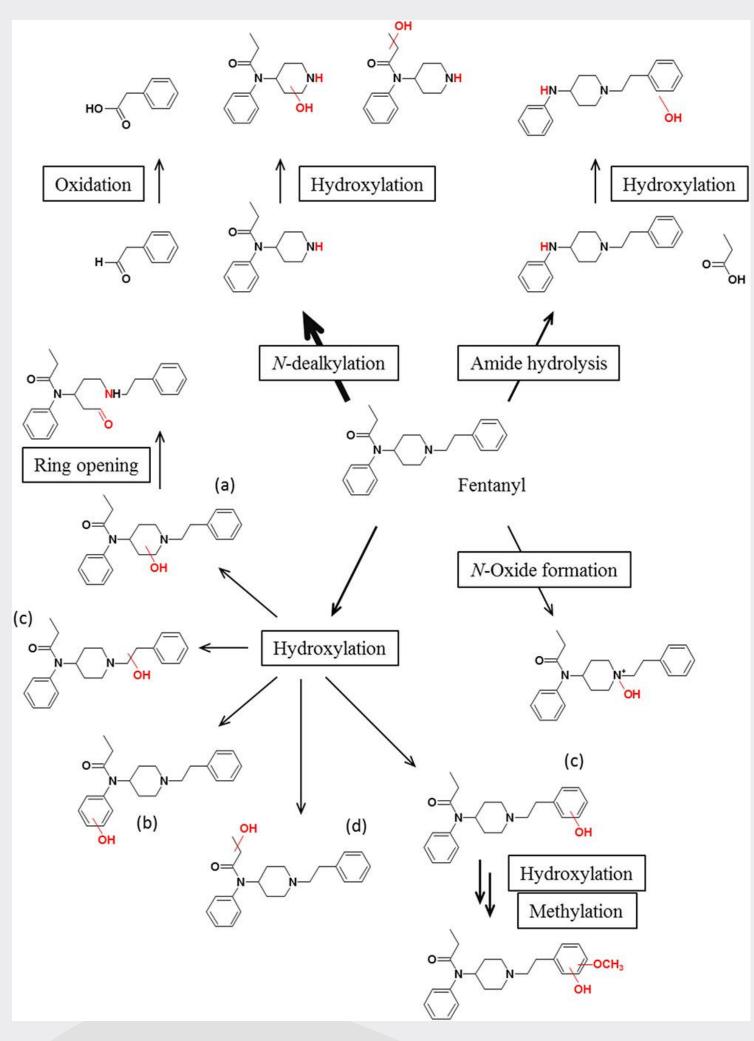
METABOLISM OF OPIOIDS

PHASE 1 METABOLISM

- **Oxidation** or **hydrolysis** of opioid drugs
- Involves the cytochrome P450 (CYP) enzymes -- allow for *N-, O-,* and *S*-dealkylation
- Each opioid has an interaction with the specific enzyme, indicating that drug metabolism is dependent on the enzymes that metabolizes it

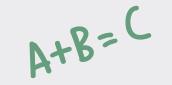
Opioid	Phase 1 metabolism
Morphine ¹²	None
Codeine ¹³	CYP2D6
Hydrocodone ¹⁴	CYP2D6
Oxycodone ¹¹	CYP3A4
	CYP2D6
Methadone ¹⁵	CYP3A4
	CYP2B6
	CYP2C8
	CYP2C19
	CYP2D6
10000	CYP2C9
Tramadol ¹⁶	CYP3A4
	CYP2D6
Fentanyl ¹⁰	CYP3A4
Hydromorphone ¹⁷	None
Oxymorphone ¹⁸	None



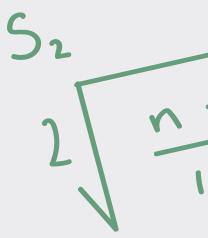

Mayo Clin Proc. 2009 Jul; 84(7): 613-624

METABOLISM OF SYNTHETIC OPIOIDS: FENTANYL

- → Major metabolism reaction for fentanyl is N-dealkylation to norfentanyl
- Since most of the fentanyl is metabolized via
 First Pass, the metabolites formed from
 fentanyl possess no pharmacological activity
- → Fentanyl is a high extraction drug: rapidly and extensively cleared from the blood by the liver
 ♦ Insensitive to changes in hepatic clearance when CYP3A4 is altered
- Thus, systemic fentanyl elimination remains
 unknown and requires more research on
 metabolism in liver, intestine, & other organs


Front. Pharmacol., 05 April 2019

The metabolites of **FENTANYL**


Fentanyl / carfentanil are mostly converted to norfentanyl by CYP3A4-mediated *N*-dealkylation (nontoxic & inactive metabolite)

No Phase 2 Metabolism Depending on the administration route, 30-90% of fentanyl is excreted via first-pass metabolism

OPIOIDS IN BIOLOGICAL FLUIDS

00

Urinalysis Blood Plasma Saliva

OPIOIDS IN BIOLOGICAL FLUIDS

08

The detection of opioids in biological fluids is key for the analysis of drug-impaired legal cases, often sampling **urine** or **blood** for opioid metabolites. Urinalysis testing of opioids commonly detects the metabolites of heroin and codeine (morphine).

	Drug	Detection in URINE	Detection in BLOOD	
SEMI- SYNTHETIC	<u>Hydromorphone</u>	2-4 days	2-3 days	Detect
	<u>Hydrocodone</u>	6-24 hours	24 hours	Most wid
	<u>Oxycodone</u>	2-4 days	26-28 hours	Detect high
SYNTHETIC	<u>Fentanyl</u>	Not easily detected (24-72 hours)	Not easily detected (5-48 hours)	Not d fenta
	<u>Carfentanil</u>	Not enough research	Not enough research	

Detection Limits

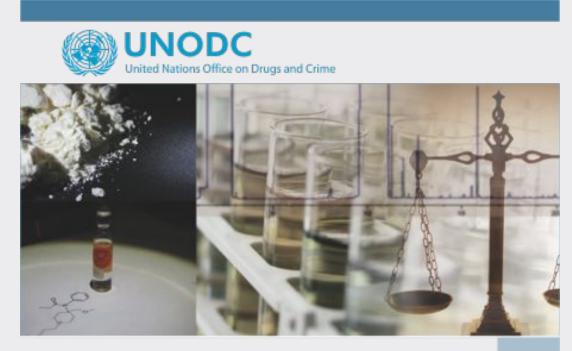
ction varies across different immunoassays with reported range of 20-50% cross-reactivity for morphine

dely abused prescription drug, exhibits variable detection using immunoassays that show equivalent detection to morphine

cted using immunoassays, no detection at concentrations more than 50-fold her than morphine (oxymorphone = 100% cross-reactivity, well detected)

detected by morphine/oxycodone-specific immunoassays, but detected via tanyl-specific immunoassays; confirmation tests required (GC-MS, LC-MS)

Detected in animals with immunoassays and LC-MS-MS


(IIIII)

OTHER MATRICES FOR OPIOIDS

Since fentanyl and other opioids are metabolized differently, the amount of time they can be detected in the body differs, with the detection of opioids in the saliva ranging from 24 to 48 hours and up to 90 days in hair follicles.

<u>OPIOID</u>	<u>DETECTION IN</u> <u>SALIVA</u>	DETECTION IN HAIR
Heroin	Only in the first 5 hours after the last dose	Up to 90 days
Hydrocodone	First 12-36 hours after the last pill was ingested	Up to 90 days
Oxycodone (Oxycontin)	Detectable within minutes up to 48 hours	Up to 90 days
Fentanyl	1-4 days	Up to 90 days
Methadone	Detectable after 30 minutes and up to 2 days	Up to 90 days

Recommended methods for the Identification and Analysis of Fentanyl and its Analogues in **Biological Specimens**

4+B=L

MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES

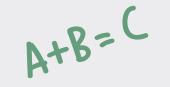
08

Post-mortem distribution of acetyl fentanyl

Table 4 Postmortem concentrations of mepirapim and acetyl fentanyl in body fluid and solid tissue specimens obtained from the deceased

Specimen	Mepirapim (ng/ mL or g)	Acetyl fentanyl (ng/mL or g)	
Heart whole blood	587 ± 42	212 ± 15	
Femoral vein whole blood	554 ± 46	170 ± 9	
Urine	309 ± 44	169 ± 15	
Cerebrum	2740 ± 185	649 ± 34	
Cerebellum	2690 ± 316	688 ± 28	
Pons	3300 ± 162	821±5	
Medulla oblongata	1710 ± 41	489 ± 22	
Lung	2720 ± 339	448 ± 28	
Myocardium	3120 ± 332	1180 ± 82	
Liver	6300 ± 405	416 ± 31	
Pancreas	2400 ± 325	987 ± 43	
Kidney	5410 ± 574	1140 ± 140	
Adrenal gland	1580 ± 194	481 ± 26	
Spleen	3610 ± 287	1150 ± 32	
Psoas major muscle	792 ± 122	281 ± 11	

The highest concentrations of acetyl fentanyl among these specimens were found in the myocardium, followed by the spleen and kidney at 1140–1180 ng/g.


The urinary level of acetyl fentanyl was close to those in femoral vein and heart whole blood, which suggested that death occurred before sufficient excretion and metabolism of the drug.

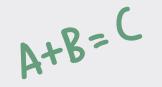
Data are presented as the mean \pm SD (n=5 each)

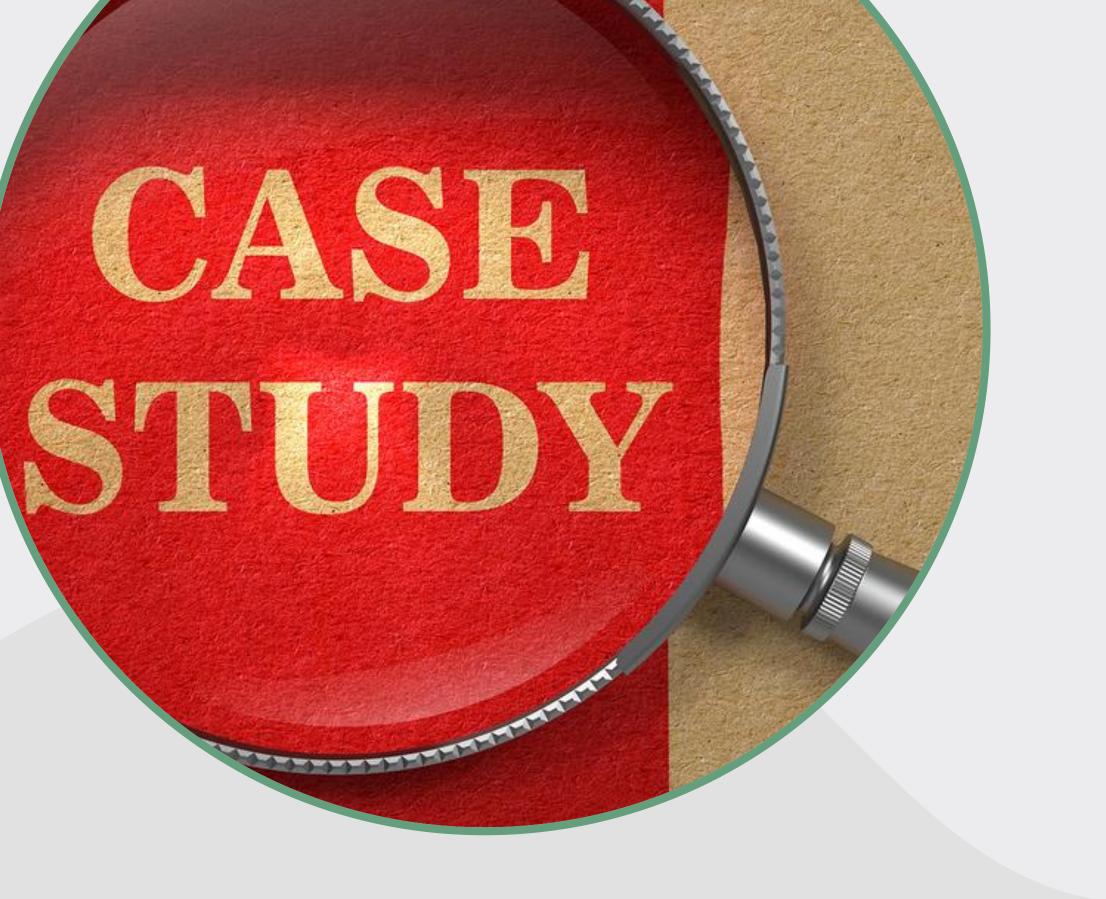
Forensic Toxicol. 2019; 37(1): 27–33.

Moreover, the concentrations in urine were lower than those in the liver and brain, which suggested that death was rapid

A 21-year-old male was found dead at home with a note stating that he had taken carfentanil with suicidal intentions. A foil bag and plastic bag labeled "C.50" were found at the scene (see Figure 1 for evidence) Blood, urine and vitreous, obtained during autopsy, tested to detect compounds based on their μ-opioid receptor activity rather than their chemical structure. All extracts showed strong opioid

activity


FIGURE 1. (A) Foil bag found at the scene. **(B)** Foil bag obtained by the Belgian Early Warning System on Drugs. **(C)** Foil bag and plastic bag found in a fatality in Norway [image used with kind permission of the National Criminal Investigation Service/Photo (Norway)] (Vevelstad and Drange, 2017).


Front. Pharmacol., 15 May 2018

Post-mortem distribution of drugs and metabolites case study

Now, let's consider a case study on the toxicological and legal implications of opioid use in Canada:

CAN-LII CASE STUDY

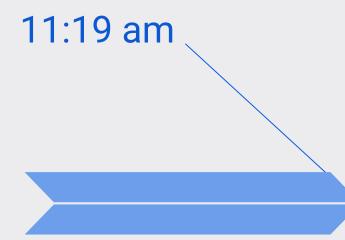
R. v. Macdonald 2021 BCSC 371 (CanLII)

Incidence Date: June 24, 2016

R. v. Macdonald

10:50 am

Time of the Accident


On June 24, 2016, a Honda Civic and a Dodge Ram collided with both vehicles airbags deployed. 9-1-1 was called.

Police Arrive at Scene

10:58 am

Constable Eric Parent (RCMP) was the first to arrive to the scene at 10:58 am. The officer noted the accused was walking straight not along the side of the highway, and had trouble keeping his balance. The DRE examination noted intoxicated actions.

TIMELINE OF CASE

Hospital Observations

The accused was taken to the hospital and was admitted at 11:30 am. Dr. Bartnell found a green powder on the accused's nostrils, lips, and clothing. The doctor found the accused to have slow movements and difficulty with a finger-to-nose test. Eye contact was poor, failed to answer questions, and yawned every 3-5 minutes, indicating intoxication.

Shortly after 11:30 am

Biological Sample Collected

Dr. Bartnell ordered urine screening tests on the accused. The accused was unable to urinate after 3 attempts, forcing a catheter to be arranged for sample collection. The samples were then analyzed at the hospital.

Discharged from Hospital

1:10 pm

Once Dr. Bartnell assessed the urinalysis, the accused was discharged from the hospital at 1:10 pm.

A+B=L

FROM CRIME SCENE TO SCREENING LAB

correctly identify drug-impaired persons.

determine:

- During this stage, the police officer detects the impairment, initiates an oral and physical drug test on the roadside, and then evaluates the individual via a Drug Recognition Expert (DRE). A **<u>Drug Recognition Expert (DRE)</u>** is a police officer who is trained and certified by the International Association of Chiefs of Police (IACP) to
- In Canada, all DRE officers are trained by the Royal Canadian Mounted Police (RCMP). DREs are trained on a **12-step protocol** called the Drug Influence Evaluation to
 - [1] If the driver is actually impaired

and

[2] The classification of the drug causing the incident.

4+8=1

FROM CRIME SCENE TO SCREENING LAB

12-Step DRE Protocol:

- Breath Alcohol Test 1.
- 2. Interview of the Arresting Officer
- 3. Preliminary Examination and First Pulse
- 4. Eye Examinations
- 5. **Divided Attention Psychophysical Tests**
- Vital Signs and Second Pulse 6.
- 7. Dark Room Examinations
- 8. **Examination for Muscle Tone**
- 9. Check for Injection Sites and Third Pulse
- Subject's Statements and Other Observations 10.
- Analysis and Opinions of the Evaluator 11.
- 12.

After completing the evaluation, the DRE normally requests a urine, blood

marker, and/or OF sample from the subject for a toxicology lab analysis

FROM CRIME SCENE TO SCREENING LAB

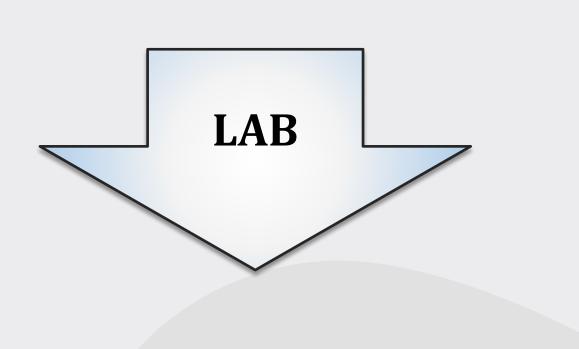
R. v. Macdonald

DRE ASSESSMENT:

Constable Eric Parent (RCMP) was the first to arrive to the scene at 10:58 am. The officer noted the accused was not walking straight along the side of the highway, and had trouble keeping his balance. Constable Parent engaged in conversation with the accused, but noted his speech was slow and confused, as if he just woke up. Upon examination, the accused had great difficulty with the finger-to-nose test and lacked responses when asked them.

Take a closer look at the highlighted regions!

Drug Symptom Matrix							
	CNS Depressant	Inhalants	РСР	Cannabis	CNS Stimulants	Hallucinogens	Narcotic Analgesics
HGN	Present	Present	Present	None	None	None	None
VERTICAL NYSTAGMUS	Present* (High Dose)	Present* (High Dose)	Present	None	None	None	None
LACK of CONVERGENCE	Present	Present	Present	Present	None	None	None
PUPIL SIZE	Normal (1)	Normal (4)	Normal	Dilated (6)	Dilated	Dilated	Constricted
REACTION to LIGHT	Slow	Slow	Normal	Normal	Slow	Normal (3)	Little to none visible
PULSE RATE	Down (2)	Up	Up	Up	Up	Up	Down
BLOOD PRESSURE	Down	Up/Down (5)	Up	Up	Up	Up	Down
BODY TEMPERATURE	Normal	Up/Down/ Normal	Up	Normal	Up	Up	Down


09

Incidence Date: June 24, 2016

CRIME SCENE

POLICE STATION

TOXICOLOGICAL EVIDENCE

- blood and one vial of urine for analysis
- the hospital's analysis)
- ${ } \bullet$ accurate concentration reading
- reaction time / inappropriate reaction to situations.

CASE STUDY: R. v. Macdonald

Jacqueline Mack (Forensic Toxicologist) employed by the RCMP was given 2 vials of

Tests on the vials of **both blood and urine** confirmed the presence of diazepam (Valium), nordiazepam, temazepam, and fentanyl in the accused system (consistent with

Fentanyl found in the blood was at very low concentrations, not a suitable level for an

Overall, Mack found the accused to have high levels of central nervous system depressants in his system that would slow down brain activity and induce a longer

LIST OF REFERENCES

- 1.
- Dispension's biometric opioid vending machines ready for Canada-wide roll out | Biometric Update 2.
- **Opioids | Canadian Centre on Substance Use and Addiction** 3.
- 4. Codeine | C18H21NO3 - PubChem
- 5. Oxycodone | C18H21NO4 - PubChem
- 6. Heroin | C21H23NO5 - PubChem
- 7. Hydromorphone | C17H19NO3 - PubChem
- 8. Fentanyl | C22H28N2O - PubChem
- Carfentanil: Uses, Interactions, Mechanism of Action | DrugBank Online 9.
- 10. Our actions
- A Brief History of Opium 11.
- The History of Opioids 12.
- **Opioid- and Stimulant-related Harms in Canada** 13.
- THE OPIOID EPIDEMIC BY THE NUMBERS 14.
- 15. Opioid- and Stimulant-related Harms in Canada - Public Health Infobase | Public Health Agency of Canada
- Opioids and the opioid crisis Get the facts Canada.ca 16.
- Frontiers | Postmortem Toxicology of New Synthetic Opioids | Pharmacology; Metabolic Pathways and Potencies of New Fentanyl Analogs 17.
- Big data and predictive modelling for the opioid crisis: existing research and future potential The Lancet Digital Health 18.
- Hydromorphone: Uses, Interactions, Mechanism of Action | DrugBank Online 19.
- Hydrocodone: Uses, Interactions, Mechanism of Action | DrugBank Online 20.
- Oxycodone: Uses, Interactions, Mechanism of Action | DrugBank Online 21.
- Semi-synthetic Opioids | DrugBank Online 22.
- Fentanyl DrugFacts | National Institute on Drug Abuse (NIDA) 23.
- Fentanyl: Uses, Interactions, Mechanism of Action | DrugBank Online 24.
- 25. Carfentanil: Uses, Interactions, Mechanism of Action | DrugBank Online
- Methadone: Uses, Interactions, Mechanism of Action | DrugBank Online 26.
- 27. Fentanyl DrugFacts | National Institute on Drug Abuse (NIDA)
- Opioid Data Analysis and Resources | CDC's Response to the Opioid Overdose Epidemic | CDC 28.
- Vancouver Sun; 29.
- 30. The Impact of Opioids on the Cardiovascular System
- **Opioids and the Brain How do changes in the brain begin? PursueCare** 31.
- **Overview of Pharmacodynamics Clinical Pharmacology Merck Manuals Professional Edition** 32.

LIST OF REFERENCES

- The opioid epidemic: a central role for the blood brain barrier in opioid analgesia and abuse | Fluids and Barriers of the CNS | Full Text 33.
- The Brain & the Actions of Cocaine, Opioids, and Marijuana | National Institute on Drug Abuse (NIDA) 34.
- Frontiers | Activity-Based Detection and Bioanalytical Confirmation of a Fatal Carfentanil Intoxication | Pharmacology 35.
- **Opioid Pharmacology** 36.
- 37. **Opioid Pharmacology**
- 38. 2-Minute Neuroscience: Agonism, Antagonism, & Allosteric Modulation
- 39. **Opioid Pharmacokinetics - Palliative Care Network of Wisconsin**
- Frontiers | Metabolic Pathways and Potencies of New Fentanyl Analogs | Pharmacology 40.
- Oxycodone: Uses, Interactions, Mechanism of Action | DrugBank Online 41.
- Fentanyl: Uses, Interactions, Mechanism of Action | DrugBank Online 42.
- 43. Pharmacogenetics And Pain Management (Page 2)
- 44. **Opioid Metabolism**
- The regioselective glucuronidation of morphine by dimerized human UGT2B7, 1A1, 1A9 and their allelic variants 45.
- Pharmacokinetics 4 Metabolism 46.
- **Opioid Metabolites** 47.
- Fentanyl Metabolism by Human Hepatic and Intestinal Cytochrome P450 3A4: Implications for Interindividual Variability in Disposition, Efficacy, and Drug Interactions | Drug Metabolism & 48. Disposition
- **CARFENTANIL Critical Review Report** 49.
- DARK Classics in Chemical Neuroscience: Carfentanil 50.
- Metabolism of Carfentanil, an Ultra-Potent Opioid, in Human Liver Microsomes and Human Hepatocytes by High-Resolution Mass Spectrometry | SpringerLink 51.
- Urine Drug Screening: Practical Guide for Clinicians Mayo Clinic Proceedings 52.
- 53. Laboratory Testing for Prescription Opioids
- Forensic drug testing for opiates. VI. Urine testing for hydromorphone, hydrocodone, oxymorphone, and oxycodone with commercial opiate immunoassays and gas chromatography-mass 54. spectrometry
- oxycodone and hydrocodone: detection in urine, oral fluid, and blood 55.
- An analysis of the duration of fentanyl and its metabolites in urine and saliva 56.
- Urine testing for norcodeine, norhydrocodone, and noroxycodone facilitates interpretation and reduces false negatives. | Semantic Scholar 57.
- Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC-MS/MS 58.
- How Long Can Drugs Be Detected From a Mouth Swab Capstone Healthcare 59.
- How Long Do Opiates Stay in Your System: Oxycodone & Hydrocodone 60.

LIST OF REFERENCES

61. <u>Recommended Methods for the Identification and Analysis of Fentanyl and its Analogues in Biological Specimens</u>

- 62. Figure 3-1: Drug Detection Periods in Various Specimens
- 63. Evaluation of Saliva/Oral Fluid as an Alternate Drug Testing Specimen
- 64. Frontiers | Activity-Based Detection and Bioanalytical Confirmation of a Fatal Carfentanil Intoxication | Pharmacology
- 65.<u>R. v Macdonald, 2021 BCSC 371 (CanLII)</u>
- 66. Drug Recognition Expert Evaluations Royal Canadian Mounted Police
- 67.DRE Rolling Logs: What are they and why should I care?
- 67. Ministry of the Solicitor General | Ontario.ca

A+B=C